tensor.py 36.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
24
from ..data_feeder import convert_dtype
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
31
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
32
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
33 34 35
]


X
xuwei06 已提交
36
def create_tensor(dtype, name=None, persistable=False):
37
    """
Q
update  
qiaolongfei 已提交
38
    Create an variable, which will hold a LoDTensor with data type dtype.
39 40

    Args:
Q
update  
qiaolongfei 已提交
41
        dtype(string): 'float32'|'int32'|..., the data type of the
42
            created tensor.
Q
update  
qiaolongfei 已提交
43
        name(string): The name of the created tensor, if not set,
44
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
45
        persistable(bool): Set the persistable flag of the create tensor.
46 47 48 49 50 51 52

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

53
          import paddle.fluid as fluid
54 55
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
56
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
57 58
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
59 60


61 62
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
63
                     name=None,
64 65 66 67
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
68
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
69 70 71 72 73
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

74 75 76 77 78 79 80
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
81 82 83
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
84
        default_initializer (Initializer, optional): Initializer for the parameter
85 86

    Returns:
87
        The created parameter.
Y
yuyang18 已提交
88 89

    Examples:
90 91
        .. code-block:: python

92
            import paddle.fluid as fluid
93 94
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
95
    """
Q
Qiao Longfei 已提交
96
    helper = LayerHelper("create_parameter", **locals())
97
    if attr is None:
X
xuwei06 已提交
98
        attr = ParamAttr(name=name)
99 100 101 102
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


103 104 105 106 107 108 109
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
110
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
111

112 113 114
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
115
                      variable will be filled with it.
116 117
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
118
                           Default: False
119
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
120
                         Default: False
121 122
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
123 124

    Returns:
125
        Variable: The created Variable
F
fengjiayi 已提交
126 127 128 129

    Examples:
        .. code-block:: python

130
            import paddle.fluid as fluid
131 132 133
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
134
    """
Q
Qiao Longfei 已提交
135 136
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
137 138 139 140 141
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
142 143 144
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
145

Q
Qiao Longfei 已提交
146 147 148
    return var


149
def cast(x, dtype):
Y
Yu Yang 已提交
150
    """
M
minqiyang 已提交
151
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
152 153
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
154 155 156 157 158 159 160 161 162 163

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
164

165
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
166 167
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
168 169
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
170
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
171 172 173 174 175 176 177 178 179
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


180
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
181
    """
182 183 184
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
185
    and returns that as the output.
186 187 188 189

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
190 191
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
192 193 194 195 196 197

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
198

199
            import paddle.fluid as fluid
200 201 202 203 204
            a = fluid.layers.data(name='a', shape=[2, 13], dtype='float32')
            b = fluid.layers.data(name='b', shape=[2, 3], dtype='float32')
            c = fluid.layers.data(name='c', shape=[2, 2], dtype='float32')
            d = fluid.layers.data(name='d', shape=[2, 5], dtype='float32')
            out = fluid.layers.concat(input=[a, b, c, d], axis=2)
Y
Yu Yang 已提交
205 206
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
207
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
208 209 210 211 212 213 214 215
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
216 217 218 219 220 221
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
222

L
li099 已提交
223
    .. code-block:: text
M
minqiyang 已提交
224

L
li099 已提交
225 226 227 228 229 230 231 232
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
233

L
li099 已提交
234
        axis = 1
M
minqiyang 已提交
235

L
li099 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

256 257 258
            import paddle.fluid as fluid
            tensor_array = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
            output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
L
li099 已提交
259
    """
L
li099 已提交
260
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
261 262 263
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
264
        type='tensor_array_to_tensor',
L
li099 已提交
265 266 267 268 269 270 271
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


272
def sums(input, out=None):
F
fengjiayi 已提交
273 274
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
275 276 277 278 279
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
280
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
281
                             Default: None
K
kavyasrinet 已提交
282 283

    Returns:
F
fengjiayi 已提交
284
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
285 286

    Examples:
F
fengjiayi 已提交
287
        .. code-block:: python
K
kavyasrinet 已提交
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
          import paddle.fluid as fluid

          # sum of several tensors
          a0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
          a1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
          a2 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=3)
          sums = fluid.layers.sums(input=[a0, a1, a2])

          # sum of a tensor array
          array = fluid.layers.create_array('int64')
          i = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)
          fluid.layers.array_write(a0, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a1, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a2, array=array, i=i)
          sums = fluid.layers.sums(input=array)
Y
Yu Yang 已提交
306 307 308
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
309 310
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
311 312 313 314 315
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
316 317 318
    return out


F
fengjiayi 已提交
319
def assign(input, output=None):
320 321 322 323 324 325
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
326
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
327
        output(Variable|None): The destination variable
328 329 330 331 332 333

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
334

335 336
          import paddle.fluid as fluid
          data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
337 338 339 340
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
341
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
342
    if output is None:
X
Xin Pan 已提交
343
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
344 345
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
346
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
347 348
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
349
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
350
            value_name = "fp32_values"
351
            values = [float(v) for v in input.flat]
352
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
353
            value_name = "int32_values"
354
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
355 356
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
357 358 359
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
360 361 362 363 364 365 366

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
367
                value_name: values
X
xuwei06 已提交
368 369 370 371
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
372 373 374
    return output


Q
QI JUN 已提交
375
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
376
    """
377 378
    **fill_constant**

379 380
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
381

382
    The attribute `stop_gradient` of the created tensor is set to True.
383 384

    Args:
385
        shape(tuple|list|None): Shape of the output tensor.
386
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
387 388
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
389
        force_cpu(True|False): data should be on CPU if set true.
390 391

    Returns:
392
        Variable: The tensor variable storing the output.
393 394 395 396

    Examples:
        .. code-block:: python

397
          import paddle.fluid as fluid
398
          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
399
    """
400

Y
Yu Yang 已提交
401
    helper = LayerHelper("fill_constant", **locals())
402 403 404 405 406 407 408
    if convert_dtype(dtype) not in [
            'bool', 'float16', 'float32', 'float64', 'int32', 'int64'
    ]:
        raise TypeError(
            "The create data type in fill_constant must be one of 'bool', float16, float32,"
            "float64, int32 or int64, but received %s." % convert_dtype(
                (dtype)))
Y
Yu Yang 已提交
409
    if out is None:
X
Xin Pan 已提交
410
        out = helper.create_variable_for_type_inference(dtype=dtype)
411 412 413 414 415 416
    else:
        if not (convert_dtype(dtype) == convert_dtype(out.dtype)):
            raise TypeError(
                "The create data type in op must be same with out type"
                "but received %s and out dtype %s." % (convert_dtype(
                    (dtype), convert_dtype(out.dtype))))
Y
Yu Yang 已提交
417 418 419 420
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
421 422 423 424
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
425
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
426 427
        },
        stop_gradient=True)
Y
Yu Yang 已提交
428 429 430 431
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
432
@templatedoc()
Y
Yu Yang 已提交
433 434 435 436 437
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
438
                                  output_dim_idx=0):
439
    """
Y
yuyang18 已提交
440
    ${comment}
441 442 443 444

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
445
        input(${input_type}): ${input_comment}.
446

Y
yuyang18 已提交
447
        shape(${shape_type}): ${shape_comment}.
448

Y
yuyang18 已提交
449 450 451
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
452

Y
yuyang18 已提交
453 454 455 456 457
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
458
        ${out_comment}.
H
haowang101779990 已提交
459 460 461 462 463

    Examples:

        .. code-block:: python

464 465
             import paddle.fluid as fluid
             like = fluid.layers.data(name='like', shape=[1], dtype='float32')
W
wangchaochaohu 已提交
466
             data = fluid.layers.fill_constant_batch_size_like(
H
haowang101779990 已提交
467 468
                         input=like, shape=[1], value=0, dtype='int64')

469
    """
Y
Yu Yang 已提交
470
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
471
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
487 488 489 490
def argmin(x, axis=0):
    """
    **argmin**

491
    This function computes the indices of the min elements
S
sneaxiy 已提交
492 493 494 495 496 497
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
498

S
sneaxiy 已提交
499 500
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
501

S
sneaxiy 已提交
502 503
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
504

505
            import paddle.fluid as fluid
506 507 508
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmin(x, axis=0)
            out = fluid.layers.argmin(x, axis=-1)
S
sneaxiy 已提交
509 510
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
511
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
512 513 514 515 516 517 518 519 520 521 522 523
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

524
    This function computes the indices of the max elements
S
sneaxiy 已提交
525 526 527 528 529 530
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
531

S
sneaxiy 已提交
532 533
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
534

S
sneaxiy 已提交
535 536
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
537

538
            import paddle.fluid as fluid
539 540 541
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmax(x, axis=0)
            out = fluid.layers.argmax(x, axis=-1)
S
sneaxiy 已提交
542 543
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
544
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
545 546 547 548 549 550 551 552
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


553
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
554
    """
M
minqiyang 已提交
555 556
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
557 558 559
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
560

Y
Yibing Liu 已提交
561 562 563 564 565 566 567 568 569 570 571 572
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
573
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
574 575 576 577
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
578 579
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
580
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
581
        name(str|None): (optional) A name for this layer. If set None, the
582
                   layer will be named automatically.
Y
Yibing Liu 已提交
583 584 585 586 587 588 589

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

590
            import paddle.fluid as fluid
591 592
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out, indices = fluid.layers.argsort(input=x, axis=0)
Y
Yibing Liu 已提交
593 594
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
595 596 597 598
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
599 600 601 602
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
603 604
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
605 606 607
    return out, ids


Y
Yang Yu 已提交
608
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
609
    """
610 611 612 613 614 615 616 617
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
618
        shape(tuple|list): Shape of output tensor
619
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
620 621 622 623 624 625 626

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

627
          import paddle.fluid as fluid
628
          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
629
    """
C
chengduozh 已提交
630 631 632 633
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
634 635 636
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
637
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
638
    """
639 640 641 642 643 644 645 646
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
647 648 649
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
650 651

    Returns:
W
wanghaoshuang 已提交
652
        Variable: The tensor variable storing the output.
653 654 655 656

    Examples:
        .. code-block:: python

657
          import paddle.fluid as fluid
658
          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
659 660
    """
    return fill_constant(value=0.0, **locals())
661 662


F
fengjiayi 已提交
663 664 665 666 667 668 669 670
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
671 672 673
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
674 675 676 677 678 679 680

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

681 682 683
          import paddle.fluid as fluid
          data = fluid.layers.data(name="data", shape=[4, 8], dtype="float32")
          out = fluid.layers.reverse(x=data, axis=0)
F
fengjiayi 已提交
684
          # or:
685
          out = fluid.layers.reverse(x=data, axis=[0,1])
F
fengjiayi 已提交
686 687 688 689
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
690
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
691 692
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
693
        inputs={'X': x},
F
fengjiayi 已提交
694 695 696 697 698
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


699 700 701 702 703 704 705
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
706 707 708
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
724 725
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
726
        file_path(str): The file path where variables will be saved.
727
        overwrite(bool): Whether or not cover the given file when it has already
728 729
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
730 731 732 733 734 735 736 737

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

738
            import paddle.fluid as fluid
739 740 741 742 743 744 745
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
770 771 772 773 774 775 776


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
777
       x (Variable): The Tensor/LoDTensor to be checked.
778 779

    Returns:
780
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
781 782 783 784 785 786 787 788
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

789 790
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
791
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
792 793 794 795 796 797 798 799 800
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
801
       x (Variable): The Tensor/LoDTensor to be checked.
802 803

    Returns:
804
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
805 806 807 808 809 810 811 812
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

813 814
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
815
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
816 817 818 819 820 821 822 823 824 825 826 827 828 829
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
830 831 832 833 834

    Examples:

        .. code-block:: python

835
            import paddle.fluid as fluid
836 837 838
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
839
            out = fluid.layers.isfinite(var)
840 841
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
842
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
843 844
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
845 846 847 848 849 850 851 852 853


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
854 855 856 857
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
858
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
859 860 861
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
862
                                  distance between two adjacent values, out[i+1] - out[i].
L
Liufang Sang 已提交
863
        dtype(str): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
864

L
Liufang Sang 已提交
865 866 867
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
868 869 870 871 872

    examples:

        .. code-block:: python

873
             import paddle.fluid as fluid
W
whs 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
894
    out.stop_gradient = True
W
whs 已提交
895
    return out
Z
zhoukunsheng 已提交
896 897


Z
zhoukunsheng 已提交
898 899
def linspace(start, stop, num, dtype):
    """
900
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
901 902

    Args:
903 904 905 906 907 908 909
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
910 911

    Returns:
912 913 914
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
915

Z
zhoukunsheng 已提交
916
    Examples:
Z
zhoukunsheng 已提交
917 918
        .. code-block:: python

919
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
920 921
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
942 943


Z
zhoukunsheng 已提交
944 945
def zeros_like(x, out=None):
    """
946
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
947 948 949
    with `x`.

    Args:
950 951 952 953
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
954 955

    Returns:
956 957
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
958 959 960 961

    Examples:
        .. code-block:: python

962
          import paddle.fluid as fluid
963
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
964 965
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
966 967 968 969 970 971 972 973 974
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
975 976 977 978


def diag(diagonal):
    """
979
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
980 981

    Args:
982 983
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
984 985

    Returns:
986 987
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
988 989 990 991 992 993 994

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
995 996 997

          import paddle.fluid as fluid
          import numpy as np
998 999 1000
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1016 1017


1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1030 1031
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1032 1033

    Returns:
1034
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1035 1036 1037 1038 1039

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1040 1041
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1042
          #  [0, 1, 0]
1043 1044
          #  [0, 0, 1]]

1045
          data = fluid.layers.eye(2, 3, dtype='int32')
1046
          # [[1, 0, 0]
1047
          #  [0, 1, 0]]
1048 1049

          data = fluid.layers.eye(2, batch_shape=[3])
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1102
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out