expand_as_kernel_impl.h 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <vector>

#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"

#define MAX_RANK_SUPPORTED 6

namespace phi {

template <typename Context, typename T, int Rank>
void ExpandAs(const Context& context,
              const DenseTensor& x,
              const std::vector<int>& target_shape,
              DenseTensor* out) {
  auto in_dims = x.dims();
  auto vec_in_dims = phi::vectorize<int>(in_dims);
  auto diff = target_shape.size() - vec_in_dims.size();
  vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
  std::vector<int> repeat_times(vec_in_dims.size());
  for (size_t i = 0; i < vec_in_dims.size(); ++i) {
    PADDLE_ENFORCE_NE(
        target_shape[i],
        0,
        errors::InvalidArgument("The value of target shape cannot be zero."));
    if (i < diff) {
      PADDLE_ENFORCE_GT(
          target_shape[i],
          0,
          errors::InvalidArgument(
              "The expanded size (%d) for non-existing dimensions must be "
              "positive for expand_as_v2 op.",
              target_shape[i]));
      repeat_times[i] = target_shape[i];
    } else if (target_shape[i] > 0) {
      if (vec_in_dims[i] != 1) {
        PADDLE_ENFORCE_EQ(
            vec_in_dims[i],
            target_shape[i],
            errors::InvalidArgument(
                "The value (%d) of the non-singleton dimension does not match"
                " the corresponding value (%d) in shape for expand_as_v2 op.",
                vec_in_dims[i],
                target_shape[i]));
        repeat_times[i] = 1;
      } else {
        repeat_times[i] = target_shape[i];
      }
    } else {
      PADDLE_ENFORCE_EQ(
          target_shape[i],
          -1,
          errors::InvalidArgument(
              "When the value in shape is negative for expand_as_v2 op, "
              "only -1 is supported, but the value received is %d.",
              target_shape[i]));
      repeat_times[i] = 1;
    }
  }
  Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
  for (size_t i = 0; i < repeat_times.size(); ++i) {
    bcast_dims[i] = repeat_times[i];
  }

  phi::DDim new_in_dims = phi::make_ddim(vec_in_dims);
  phi::DDim out_dims = phi::make_ddim(target_shape);

  out->Resize(out_dims);
  context.template Alloc<T>(out);
  auto x0 = EigenTensor<T, Rank>::From(x, new_in_dims);
  auto y = EigenTensor<T, Rank>::From(*out, out_dims);
  auto& place = *context.eigen_device();
  funcs::EigenBroadcast<std::decay_t<decltype(place)>, T, Rank>::Eval(
      place, y, x0, bcast_dims);
}

template <typename T, typename Context>
void ExpandAsKernel(const Context& ctx,
                    const DenseTensor& x,
                    paddle::optional<const DenseTensor&> y,
                    const std::vector<int>& target_shape,
                    DenseTensor* out) {
  auto rank = x.dims().size();
  auto target_rank = target_shape.size();
  PADDLE_ENFORCE_GE(target_rank,
                    rank,
                    errors::InvalidArgument(
                        "The rank (%d) of the input 'target_tensor' for "
                        "expand_as_v2 op must be greater than or equal to "
                        "the rank (%d) of the input 'x'.",
                        target_rank,
                        rank));
  PADDLE_ENFORCE_GE(
      rank,
      1,
      errors::InvalidArgument("The rank (%d) of the input 'x' for "
                              "expand_as_v2 op must be positive.",
                              rank));
  PADDLE_ENFORCE_LE(target_rank,
                    MAX_RANK_SUPPORTED,
                    errors::InvalidArgument(
                        "The rank (%d) of the input 'target_tensor' for "
                        "expand_as_v2 op must be less than or equal to %d.",
                        target_rank,
                        MAX_RANK_SUPPORTED));

  switch (target_rank) {
    case 1:
      ExpandAs<Context, T, 1>(ctx, x, target_shape, out);
      break;
    case 2:
      ExpandAs<Context, T, 2>(ctx, x, target_shape, out);
      break;
    case 3:
      ExpandAs<Context, T, 3>(ctx, x, target_shape, out);
      break;
    case 4:
      ExpandAs<Context, T, 4>(ctx, x, target_shape, out);
      break;
    case 5:
      ExpandAs<Context, T, 5>(ctx, x, target_shape, out);
      break;
    case 6:
      ExpandAs<Context, T, 6>(ctx, x, target_shape, out);
      break;
  }
}

}  // namespace phi