// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #define MAX_RANK_SUPPORTED 6 namespace phi { template void ExpandAs(const Context& context, const DenseTensor& x, const std::vector& target_shape, DenseTensor* out) { auto in_dims = x.dims(); auto vec_in_dims = phi::vectorize(in_dims); auto diff = target_shape.size() - vec_in_dims.size(); vec_in_dims.insert(vec_in_dims.begin(), diff, 1); std::vector repeat_times(vec_in_dims.size()); for (size_t i = 0; i < vec_in_dims.size(); ++i) { PADDLE_ENFORCE_NE( target_shape[i], 0, errors::InvalidArgument("The value of target shape cannot be zero.")); if (i < diff) { PADDLE_ENFORCE_GT( target_shape[i], 0, errors::InvalidArgument( "The expanded size (%d) for non-existing dimensions must be " "positive for expand_as_v2 op.", target_shape[i])); repeat_times[i] = target_shape[i]; } else if (target_shape[i] > 0) { if (vec_in_dims[i] != 1) { PADDLE_ENFORCE_EQ( vec_in_dims[i], target_shape[i], errors::InvalidArgument( "The value (%d) of the non-singleton dimension does not match" " the corresponding value (%d) in shape for expand_as_v2 op.", vec_in_dims[i], target_shape[i])); repeat_times[i] = 1; } else { repeat_times[i] = target_shape[i]; } } else { PADDLE_ENFORCE_EQ( target_shape[i], -1, errors::InvalidArgument( "When the value in shape is negative for expand_as_v2 op, " "only -1 is supported, but the value received is %d.", target_shape[i])); repeat_times[i] = 1; } } Eigen::DSizes bcast_dims; for (size_t i = 0; i < repeat_times.size(); ++i) { bcast_dims[i] = repeat_times[i]; } phi::DDim new_in_dims = phi::make_ddim(vec_in_dims); phi::DDim out_dims = phi::make_ddim(target_shape); out->Resize(out_dims); context.template Alloc(out); auto x0 = EigenTensor::From(x, new_in_dims); auto y = EigenTensor::From(*out, out_dims); auto& place = *context.eigen_device(); funcs::EigenBroadcast, T, Rank>::Eval( place, y, x0, bcast_dims); } template void ExpandAsKernel(const Context& ctx, const DenseTensor& x, paddle::optional y, const std::vector& target_shape, DenseTensor* out) { auto rank = x.dims().size(); auto target_rank = target_shape.size(); PADDLE_ENFORCE_GE(target_rank, rank, errors::InvalidArgument( "The rank (%d) of the input 'target_tensor' for " "expand_as_v2 op must be greater than or equal to " "the rank (%d) of the input 'x'.", target_rank, rank)); PADDLE_ENFORCE_GE( rank, 1, errors::InvalidArgument("The rank (%d) of the input 'x' for " "expand_as_v2 op must be positive.", rank)); PADDLE_ENFORCE_LE(target_rank, MAX_RANK_SUPPORTED, errors::InvalidArgument( "The rank (%d) of the input 'target_tensor' for " "expand_as_v2 op must be less than or equal to %d.", target_rank, MAX_RANK_SUPPORTED)); switch (target_rank) { case 1: ExpandAs(ctx, x, target_shape, out); break; case 2: ExpandAs(ctx, x, target_shape, out); break; case 3: ExpandAs(ctx, x, target_shape, out); break; case 4: ExpandAs(ctx, x, target_shape, out); break; case 5: ExpandAs(ctx, x, target_shape, out); break; case 6: ExpandAs(ctx, x, target_shape, out); break; } } } // namespace phi