test_label_semantic_roles.py 16.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import contextlib
Q
Qiao Longfei 已提交
18
import math
Q
Qiao Longfei 已提交
19
import numpy as np
Y
Yu Yang 已提交
20 21 22 23
import os
import time
import unittest

24 25
import paddle
import paddle.dataset.conll05 as conll05
26
import paddle.fluid as fluid
Q
Qiao Longfei 已提交
27

P
pangyoki 已提交
28 29
paddle.enable_static()

Q
Qiao Longfei 已提交
30 31 32
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
L
Liu Yiqun 已提交
33
pred_dict_len = len(verb_dict)
Q
Qiao Longfei 已提交
34 35 36 37 38 39 40 41 42

mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3

IS_SPARSE = True
43
PASS_NUM = 2
44
BATCH_SIZE = 10
Q
Qiao Longfei 已提交
45 46 47 48 49 50 51 52 53 54

embedding_name = 'emb'


def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


Y
Yu Yang 已提交
55 56
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
            **ignored):
Q
Qiao Longfei 已提交
57
    # 8 features
58 59 60 61 62 63 64 65 66 67
    predicate_embedding = fluid.layers.embedding(input=predicate,
                                                 size=[pred_dict_len, word_dim],
                                                 dtype='float32',
                                                 is_sparse=IS_SPARSE,
                                                 param_attr='vemb')

    mark_embedding = fluid.layers.embedding(input=mark,
                                            size=[mark_dict_len, mark_dim],
                                            dtype='float32',
                                            is_sparse=IS_SPARSE)
Q
Qiao Longfei 已提交
68 69 70

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
71 72 73 74 75
        fluid.layers.embedding(size=[word_dict_len, word_dim],
                               input=x,
                               param_attr=fluid.ParamAttr(name=embedding_name,
                                                          trainable=False))
        for x in word_input
Q
Qiao Longfei 已提交
76 77 78 79 80
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0_layers = [
J
jshower 已提交
81
        fluid.layers.fc(input=emb, size=hidden_dim) for emb in emb_layers
Q
Qiao Longfei 已提交
82 83
    ]

84
    hidden_0 = fluid.layers.sums(input=hidden_0_layers)
Q
Qiao Longfei 已提交
85

86 87 88 89 90
    lstm_0 = fluid.layers.dynamic_lstm(input=hidden_0,
                                       size=hidden_dim,
                                       candidate_activation='relu',
                                       gate_activation='sigmoid',
                                       cell_activation='sigmoid')
Q
Qiao Longfei 已提交
91 92 93 94 95

    # stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
96
        mix_hidden = fluid.layers.sums(input=[
J
jshower 已提交
97 98
            fluid.layers.fc(input=input_tmp[0], size=hidden_dim),
            fluid.layers.fc(input=input_tmp[1], size=hidden_dim)
Q
Qiao Longfei 已提交
99 100
        ])

101 102 103 104 105 106
        lstm = fluid.layers.dynamic_lstm(input=mix_hidden,
                                         size=hidden_dim,
                                         candidate_activation='relu',
                                         gate_activation='sigmoid',
                                         cell_activation='sigmoid',
                                         is_reverse=((i % 2) == 1))
Q
Qiao Longfei 已提交
107 108 109

        input_tmp = [mix_hidden, lstm]

110
    feature_out = fluid.layers.sums(input=[
111 112
        fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
        fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
Q
Qiao Longfei 已提交
113 114 115 116 117
    ])

    return feature_out


武毅 已提交
118
def train(use_cuda, save_dirname=None, is_local=True):
Q
Qiao Longfei 已提交
119
    # define network topology
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    word = fluid.layers.data(name='word_data',
                             shape=[1],
                             dtype='int64',
                             lod_level=1)
    predicate = fluid.layers.data(name='verb_data',
                                  shape=[1],
                                  dtype='int64',
                                  lod_level=1)
    ctx_n2 = fluid.layers.data(name='ctx_n2_data',
                               shape=[1],
                               dtype='int64',
                               lod_level=1)
    ctx_n1 = fluid.layers.data(name='ctx_n1_data',
                               shape=[1],
                               dtype='int64',
                               lod_level=1)
    ctx_0 = fluid.layers.data(name='ctx_0_data',
                              shape=[1],
                              dtype='int64',
                              lod_level=1)
    ctx_p1 = fluid.layers.data(name='ctx_p1_data',
                               shape=[1],
                               dtype='int64',
                               lod_level=1)
    ctx_p2 = fluid.layers.data(name='ctx_p2_data',
                               shape=[1],
                               dtype='int64',
                               lod_level=1)
    mark = fluid.layers.data(name='mark_data',
                             shape=[1],
                             dtype='int64',
                             lod_level=1)
Y
Yu Yang 已提交
152
    feature_out = db_lstm(**locals())
153 154 155 156 157 158 159 160 161
    target = fluid.layers.data(name='target',
                               shape=[1],
                               dtype='int64',
                               lod_level=1)
    crf_cost = fluid.layers.linear_chain_crf(input=feature_out,
                                             label=target,
                                             param_attr=fluid.ParamAttr(
                                                 name='crfw',
                                                 learning_rate=mix_hidden_lr))
Y
Yu Yang 已提交
162
    avg_cost = fluid.layers.mean(crf_cost)
Q
Qiao Longfei 已提交
163

Q
Qiao Longfei 已提交
164
    # TODO(qiao)
Q
Qiao Longfei 已提交
165
    # check other optimizers and check why out will be NAN
166
    sgd_optimizer = fluid.optimizer.SGD(
167 168 169 170
        learning_rate=fluid.layers.exponential_decay(learning_rate=0.01,
                                                     decay_steps=100000,
                                                     decay_rate=0.5,
                                                     staircase=True))
W
Wu Yi 已提交
171
    sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
172

Q
Qiao Longfei 已提交
173 174 175
    # TODO(qiao)
    # add dependency track and move this config before optimizer
    crf_decode = fluid.layers.crf_decoding(
Q
Qiao Longfei 已提交
176 177
        input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))

178 179 180
    train_data = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.conll05.test(), buf_size=8192),
                              batch_size=BATCH_SIZE)
181 182

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
183 184 185 186
    feeder = fluid.DataFeeder(feed_list=[
        word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target
    ],
                              place=place)
187
    exe = fluid.Executor(place)
Q
Qiao Longfei 已提交
188

武毅 已提交
189 190 191 192 193 194 195 196 197 198
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        embedding_param = fluid.global_scope().find_var(
            embedding_name).get_tensor()
        embedding_param.set(
            load_parameter(conll05.get_embedding(), word_dict_len, word_dim),
            place)

        start_time = time.time()
        batch_id = 0
199
        for pass_id in range(PASS_NUM):
武毅 已提交
200
            for data in train_data():
201 202 203 204
                cost = exe.run(main_program,
                               feed=feeder.feed(data),
                               fetch_list=[avg_cost])
                cost = cost[0]
武毅 已提交
205 206

                if batch_id % 10 == 0:
207
                    print("avg_cost:" + str(cost))
武毅 已提交
208
                    if batch_id != 0:
209 210
                        print("second per batch: " +
                              str((time.time() - start_time) / batch_id))
武毅 已提交
211
                    # Set the threshold low to speed up the CI test
212
                    if float(cost) < 80.0:
武毅 已提交
213 214
                        if save_dirname is not None:
                            # TODO(liuyiqun): Change the target to crf_decode
215 216 217 218 219 220
                            fluid.io.save_inference_model(
                                save_dirname, [
                                    'word_data', 'verb_data', 'ctx_n2_data',
                                    'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data',
                                    'ctx_p2_data', 'mark_data'
                                ], [feature_out], exe)
武毅 已提交
221 222 223 224
                        return

                batch_id = batch_id + 1

225 226 227 228
        raise RuntimeError(
            "This model should save_inference_model and return, but not reach here, please check!"
        )

武毅 已提交
229 230 231
    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
232 233
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
234 235 236 237
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
238
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
239
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
240 241
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
242
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
243
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
244 245 246 247 248 249 250 251
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Q
Qiao Longfei 已提交
252 253


254 255 256 257 258 259 260
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

261 262 263
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
264
        # the feed_target_names (the names of variables that will be fed
265 266 267 268 269
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

270
        # Setup input by creating LoDTensor to represent sequence of words.
271 272
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
K
Kexin Zhao 已提交
273
        # look up for the corresponding word vector.
274
        # Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
275 276 277 278
        # which has only one level of detail. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
279 280
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[3, 4, 2]]
K
Kexin Zhao 已提交
281
        base_shape = [1]
K
Kexin Zhao 已提交
282
        # The range of random integers is [low, high]
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        word = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                 base_shape,
                                                 place,
                                                 low=0,
                                                 high=word_dict_len - 1)
        pred = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                 base_shape,
                                                 place,
                                                 low=0,
                                                 high=pred_dict_len - 1)
        ctx_n2 = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                   base_shape,
                                                   place,
                                                   low=0,
                                                   high=word_dict_len - 1)
        ctx_n1 = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                   base_shape,
                                                   place,
                                                   low=0,
                                                   high=word_dict_len - 1)
        ctx_0 = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                  base_shape,
                                                  place,
                                                  low=0,
                                                  high=word_dict_len - 1)
        ctx_p1 = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                   base_shape,
                                                   place,
                                                   low=0,
                                                   high=word_dict_len - 1)
        ctx_p2 = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                   base_shape,
                                                   place,
                                                   low=0,
                                                   high=word_dict_len - 1)
        mark = fluid.create_random_int_lodtensor(recursive_seq_lens,
                                                 base_shape,
                                                 place,
                                                 low=0,
                                                 high=mark_dict_len - 1)
323 324 325 326 327 328 329 330 331 332 333 334

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == 'word_data'
        assert feed_target_names[1] == 'verb_data'
        assert feed_target_names[2] == 'ctx_n2_data'
        assert feed_target_names[3] == 'ctx_n1_data'
        assert feed_target_names[4] == 'ctx_0_data'
        assert feed_target_names[5] == 'ctx_p1_data'
        assert feed_target_names[6] == 'ctx_p2_data'
        assert feed_target_names[7] == 'mark_data'

J
jshower 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: word,
                              feed_target_names[1]: pred,
                              feed_target_names[2]: ctx_n2,
                              feed_target_names[3]: ctx_n1,
                              feed_target_names[4]: ctx_0,
                              feed_target_names[5]: ctx_p1,
                              feed_target_names[6]: ctx_p2,
                              feed_target_names[7]: mark
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
348
        print(results[0].recursive_sequence_lengths())
349
        np_data = np.array(results[0])
350
        print("Inference Shape: ", np_data.shape)
351 352


武毅 已提交
353
def main(use_cuda, is_local=True):
354 355 356 357 358 359
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "label_semantic_roles.inference.model"

武毅 已提交
360
    train(use_cuda, save_dirname, is_local)
361 362 363 364
    infer(use_cuda, save_dirname)


class TestLabelSemanticRoles(unittest.TestCase):
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    def test_cuda(self):
        with self.scope_prog_guard():
            main(use_cuda=True)

    def test_cpu(self):
        with self.scope_prog_guard():
            main(use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


Q
Qiao Longfei 已提交
384
if __name__ == '__main__':
385
    unittest.main()