提交 69e0af56 编写于 作者: K Kexin Zhao

do this to new_api example

上级 dbc6102e
......@@ -202,24 +202,35 @@ def infer(use_cuda, inference_program, save_path):
inferencer = fluid.Inferencer(
inference_program, param_path=save_path, place=place)
def create_random_lodtensor(lod, place, low, high):
data = np.random.random_integers(low, high,
[lod[-1], 1]).astype("int64")
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod([lod])
return res
# Create an input example
lod = [0, 4, 10]
word = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
pred = create_random_lodtensor(lod, place, low=0, high=PRED_DICT_LEN - 1)
ctx_n2 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
ctx_n1 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
ctx_0 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
ctx_p1 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
ctx_p2 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
mark = create_random_lodtensor(lod, place, low=0, high=MARK_DICT_LEN - 1)
# Setup inputs by creating LoDTensors to represent sequences of words.
# Here each word is the basic element of these LoDTensors and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensors will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod = [[3, 4, 2]]
base_shape = [1]
# The range of random integers is [low, high]
word = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
pred = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=PRED_DICT_LEN - 1)
ctx_n2 = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
ctx_n1 = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
ctx_0 = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
ctx_p1 = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
ctx_p2 = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
mark = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=MARK_DICT_LEN - 1)
results = inferencer.infer(
{
......
......@@ -257,8 +257,10 @@ def infer(use_cuda, save_dirname=None):
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod = [[3, 4, 2]]
base_shape = [1]
# The range of random integers is [low, high]
word = fluid.create_random_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
pred = fluid.create_random_lodtensor(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册