test_conj_api.cc 2.6 KB
Newer Older
C
chentianyu03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/phi/api/include/api.h"
C
chentianyu03 已提交
19

20 21 22
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
C
chentianyu03 已提交
23

24 25
PD_DECLARE_KERNEL(conj, CPU, ALL_LAYOUT);

C
chentianyu03 已提交
26 27 28 29
namespace paddle {
namespace tests {

namespace framework = paddle::framework;
30
using DDim = phi::DDim;
C
chentianyu03 已提交
31 32 33 34

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, conj) {
  // 1. create tensor
35
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
C
chentianyu03 已提交
36
      paddle::platform::CPUPlace());
37
  auto dense_x = std::make_shared<phi::DenseTensor>(
38
      alloc.get(),
39 40 41
      phi::DenseTensorMeta(phi::DataType::COMPLEX64,
                           phi::make_ddim({3, 10}),
                           phi::DataLayout::NCHW));
42 43
  auto* dense_x_data =
      dense_x->mutable_data<paddle::complex64>(paddle::platform::CPUPlace());
C
chentianyu03 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = paddle::complex64(i * 10 + j, i * 10 + j);
    }
  }

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::conj(x);

  // 3. check result
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
  ASSERT_EQ(out.dims()[1], 10);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
62 63
  ASSERT_EQ(out.type(), phi::DataType::COMPLEX64);
  ASSERT_EQ(out.layout(), phi::DataLayout::NCHW);
C
chentianyu03 已提交
64 65
  ASSERT_EQ(out.initialized(), true);

66
  auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(out.impl());
C
chentianyu03 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
  auto actual_result = dense_out->data<paddle::complex64>();

  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = paddle::complex64(i * 10 + j, i * 10 + j);
      ASSERT_NEAR(actual_result[i * 10 + j].real, 1.0 * (i * 10 + j), 1e-6f);
      ASSERT_NEAR(actual_result[i * 10 + j].imag, -1.0 * (i * 10 + j), 1e-6f);
    }
  }
}

}  // namespace tests
}  // namespace paddle