test_conj_api.cc 2.5 KB
Newer Older
C
chentianyu03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/phi/api/include/api.h"
C
chentianyu03 已提交
19

20 21 22
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
C
chentianyu03 已提交
23 24 25 26 27

namespace paddle {
namespace tests {

namespace framework = paddle::framework;
28
using DDim = phi::DDim;
C
chentianyu03 已提交
29 30 31 32

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, conj) {
  // 1. create tensor
33
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
C
chentianyu03 已提交
34
      paddle::platform::CPUPlace());
35
  auto dense_x = std::make_shared<phi::DenseTensor>(
36
      alloc.get(),
37 38 39
      phi::DenseTensorMeta(phi::DataType::COMPLEX64,
                           phi::make_ddim({3, 10}),
                           phi::DataLayout::NCHW));
40 41
  auto* dense_x_data =
      dense_x->mutable_data<paddle::complex64>(paddle::platform::CPUPlace());
C
chentianyu03 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = paddle::complex64(i * 10 + j, i * 10 + j);
    }
  }

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::conj(x);

  // 3. check result
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
  ASSERT_EQ(out.dims()[1], 10);
  ASSERT_EQ(out.numel(), 30);
  ASSERT_EQ(out.is_cpu(), true);
60 61
  ASSERT_EQ(out.type(), phi::DataType::COMPLEX64);
  ASSERT_EQ(out.layout(), phi::DataLayout::NCHW);
C
chentianyu03 已提交
62 63
  ASSERT_EQ(out.initialized(), true);

64
  auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(out.impl());
C
chentianyu03 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
  auto actual_result = dense_out->data<paddle::complex64>();

  for (size_t i = 0; i < 3; ++i) {
    for (size_t j = 0; j < 10; ++j) {
      dense_x_data[i * 10 + j] = paddle::complex64(i * 10 + j, i * 10 + j);
      ASSERT_NEAR(actual_result[i * 10 + j].real, 1.0 * (i * 10 + j), 1e-6f);
      ASSERT_NEAR(actual_result[i * 10 + j].imag, -1.0 * (i * 10 + j), 1e-6f);
    }
  }
}

}  // namespace tests
}  // namespace paddle