fleet_wrapper.cc 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
30
#include <algorithm>
X
xujiaqi01 已提交
31
#include <utility>
32
#include "paddle/fluid/framework/channel.h"
33
#include "paddle/fluid/framework/data_feed.h"
34
#include "paddle/fluid/framework/io/fs.h"
35
#include "paddle/fluid/framework/op_registry.h"
36
#include "paddle/fluid/framework/scope.h"
37
#include "paddle/fluid/platform/timer.h"
38 39 40 41 42 43

namespace paddle {
namespace framework {

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
44 45 46 47 48
bool FleetWrapper::is_initialized_ = false;

#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> FleetWrapper::pslib_ptr_ = NULL;
#endif
49

50 51 52 53 54 55 56 57
void FleetWrapper::SetClient2ClientConfig(int request_timeout_ms,
                                          int connect_timeout_ms,
                                          int max_retry) {
  client2client_request_timeout_ms_ = request_timeout_ms;
  client2client_connect_timeout_ms_ = connect_timeout_ms;
  client2client_max_retry_ = max_retry;
}

58 59 60
void FleetWrapper::InitServer(const std::string& dist_desc, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
61
    VLOG(3) << "Going to init server";
62 63 64 65 66
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_server(dist_desc, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
67
    VLOG(3) << "Server can be initialized only once";
68 69 70 71 72 73 74 75 76
  }
#endif
}

void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<uint64_t>& host_sign_list,
                              int node_num, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
77
    VLOG(3) << "Going to init worker";
78 79 80 81 82 83 84
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_worker(dist_desc,
                            const_cast<uint64_t*>(host_sign_list.data()),
                            node_num, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
85
    VLOG(3) << "Worker can be initialized only once";
86 87 88 89 90 91
  }
#endif
}

void FleetWrapper::StopServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
92
  VLOG(3) << "Going to stop server";
93 94 95 96
  pslib_ptr_->stop_server();
#endif
}

97 98 99 100 101 102 103
void FleetWrapper::FinalizeWorker() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to finalize worker";
  pslib_ptr_->finalize_worker();
#endif
}

104 105
uint64_t FleetWrapper::RunServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
106
  VLOG(3) << "Going to run server";
107 108 109 110 111 112
  return pslib_ptr_->run_server();
#else
  return 0;
#endif
}

113 114 115 116 117 118 119 120 121 122
uint64_t FleetWrapper::RunServer(const std::string& ip, uint32_t port) {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to run server with ip " << ip << " port " << port;
  auto ret = pslib_ptr_->run_server(ip, port);
  return ret;
#else
  return 0;
#endif
}

123 124 125
void FleetWrapper::GatherServers(const std::vector<uint64_t>& host_sign_list,
                                 int node_num) {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
126
  VLOG(3) << "Going to gather server ips";
127 128 129 130 131
  pslib_ptr_->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
                             node_num);
#endif
}

D
dongdaxiang 已提交
132
void FleetWrapper::GatherClients(const std::vector<uint64_t>& host_sign_list) {
X
xjqbest 已提交
133 134 135
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to gather client ips";
  size_t len = host_sign_list.size();
D
dongdaxiang 已提交
136
  pslib_ptr_->gather_clients(const_cast<uint64_t*>(host_sign_list.data()), len);
X
xjqbest 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150
#endif
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to get client info";
  return pslib_ptr_->get_client_info();
#endif
  return std::vector<uint64_t>();
}

void FleetWrapper::CreateClient2ClientConnection() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to create client2client connection";
151 152 153
  pslib_ptr_->create_client2client_connection(client2client_request_timeout_ms_,
                                              client2client_connect_timeout_ms_,
                                              client2client_max_retry_);
X
xjqbest 已提交
154 155 156
#endif
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
void FleetWrapper::PullSparseToLocal(const uint64_t table_id,
                                     int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  size_t fea_keys_size = local_tables_.size();
  if (fea_keys_size == 0) {
    return;
  }
  local_table_shard_num_ = fea_keys_size;
  platform::Timer timeline;
  std::vector<std::thread> threads(fea_keys_size);
  auto ptl_func = [this, &table_id](int i) {
    size_t key_size = this->local_tables_[i].size();
    std::vector<uint64_t> keys;
    keys.reserve(key_size);
    std::vector<float*> pull_result_ptr;
    pull_result_ptr.reserve(key_size);

    for (auto& kv : this->local_tables_[i]) {
      keys.emplace_back(kv.first);
      pull_result_ptr.emplace_back(kv.second.data());
    }
    auto tt = pslib_ptr_->_worker_ptr->pull_sparse(
        pull_result_ptr.data(), table_id, keys.data(), key_size);
    tt.wait();
    auto status = tt.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(sleep_seconds_before_fail_exit_);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << pull_result_ptr.size();
    }
  };
  timeline.Start();
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(ptl_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  local_pull_pool_.reset(new ::ThreadPool(pull_local_thread_num_));
  timeline.Pause();
#endif
}

void FleetWrapper::PullSparseVarsFromLocal(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  size_t key_length = fea_keys->size();
  int local_step = key_length / pull_local_thread_num_;
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(key_length / local_step + 1);
  for (size_t i = 0; i < key_length; i += local_step) {
    size_t end = i + local_step < key_length ? i + local_step : key_length;
    auto pull_local_task = [this, i, end, &fea_values, &fea_keys,
                            &fea_value_dim] {
      for (size_t j = i; j < end; j++) {
        std::memcpy((*fea_values)[j].data(),
                    local_tables_[(*fea_keys)[j] % local_table_shard_num_]
                                 [(*fea_keys)[j]]
                                     .data(),
                    fea_value_dim * sizeof(float));
      }
    };
    task_futures.emplace_back(
        local_pull_pool_->enqueue(std::move(pull_local_task)));
  }
  for (auto& tf : task_futures) {
    tf.wait();
  }
#endif
}

void FleetWrapper::ClearLocalTable() {
#ifdef PADDLE_WITH_PSLIB
  for (auto& t : local_tables_) {
    t.clear();
  }
#endif
}

std::future<int32_t> FleetWrapper::PullSparseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
  return pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
#endif
  return std::future<int32_t>();
}

302 303 304
void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
305 306
    std::vector<std::vector<float>>* fea_values, int fea_value_dim,
    const std::vector<std::string>& var_emb_names) {
307 308 309 310 311 312
#ifdef PADDLE_WITH_PSLIB
  std::vector<::std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
313 314
  for (size_t var_index = 0; var_index < var_names.size(); ++var_index) {
    const std::string& name = var_names[var_index];
315
    Variable* var = scope.FindVar(name);
316 317 318
    if (var == nullptr) {
      continue;
    }
319
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
320
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
321
    int64_t* ids = tensor->data<int64_t>();
322
    size_t len = tensor->numel();
323 324 325 326 327 328 329 330

    // skip slots which do not have embedding
    const std::string& emb_name = var_emb_names[var_index];
    Variable* emb_var = scope.FindVar(emb_name);
    if (emb_var == nullptr) {
      continue;
    }

331 332 333 334 335 336 337
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
D
dongdaxiang 已提交
338 339 340 341 342 343 344 345 346 347 348
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
  auto status = pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
  pull_sparse_status.push_back(std::move(status));
349 350 351 352 353
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
354
      sleep(sleep_seconds_before_fail_exit_);
355 356 357 358 359 360 361 362 363 364 365
      exit(-1);
    }
  }
#endif
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* pull_dense_status) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
366 367
  auto& regions = _regions[tid];
  regions.clear();
368 369 370
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    Variable* var = scope.FindVar(var_names[i]);
371 372 373
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
374
    regions[i] = std::move(reg);
375 376 377 378 379 380 381 382 383 384 385
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
386 387
  auto& regions = _regions[tid];
  regions.clear();
388 389 390 391 392 393 394 395 396 397 398 399 400 401
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  status.wait();
#endif
}

402
void FleetWrapper::PushDenseParamSync(
D
dongdaxiang 已提交
403
    const Scope& scope, const uint64_t table_id,
404 405 406 407 408 409
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  auto place = platform::CPUPlace();
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
X
xjqbest 已提交
410
    CHECK(var != nullptr) << "var[" << t << "] not found";
411
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
412
    float* g = tensor->mutable_data<float>(place);
413 414 415
    paddle::ps::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
416 417 418 419 420
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
421 422 423
#endif
}

D
dongdaxiang 已提交
424 425 426 427
void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

428 429 430
void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
431 432
    std::vector<::std::future<int32_t>>* push_sparse_status,
    float scale_datanorm, int batch_size) {
433 434 435 436 437 438 439
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
440 441 442 443 444 445 446 447 448 449 450 451 452 453
    if (scale_datanorm >= 0) {
      if (t.find(".batch_size@GRAD") != std::string::npos ||
          t.find(".batch_sum@GRAD") != std::string::npos) {
        Eigen::Map<Eigen::MatrixXf> mat(g, 1, count);
        float scale = 1.0 / batch_size;
        mat *= scale;
      } else if (t.find(".batch_square_sum@GRAD") != std::string::npos) {
        VLOG(3) << "epsilon: " << scale_datanorm;
        for (int i = 0; i < count; ++i) {
          g[i] = (g[i] - batch_size * scale_datanorm) / batch_size +
                 batch_size * scale_datanorm;
        }
      }
    }
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
  auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
  push_sparse_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
469
    std::vector<::std::future<int32_t>>* push_sparse_status,
470
    const int batch_size, const bool use_cvm, const bool dump_slot,
471
    std::vector<uint64_t>* sparse_push_keys, const bool no_cvm) {
472 473
#ifdef PADDLE_WITH_PSLIB
  int offset = 2;
T
Thunderbrook 已提交
474
  int slot_offset = 0;
475
  int grad_dim = emb_dim;
T
Thunderbrook 已提交
476 477
  int show_index = 0;
  int click_index = 1;
478 479 480 481
  if (use_cvm) {
    offset = 0;
    grad_dim = emb_dim - 2;
  }
482 483 484 485
  if (no_cvm) {
    offset = 0;
    grad_dim = emb_dim;
  }
T
Thunderbrook 已提交
486 487 488 489 490
  if (dump_slot) {
    slot_offset = 1;
    show_index = 1;
    click_index = 2;
  }
491
  CHECK_GE(grad_dim, 0);
492

493 494
  sparse_push_keys->clear();
  sparse_push_keys->reserve(fea_keys.size() + 1);
495 496
  push_values->resize(fea_keys.size() + 1);
  for (auto& t : *push_values) {
T
Thunderbrook 已提交
497
    t.resize(emb_dim + offset + slot_offset);
498
  }
499
  uint64_t fea_idx = 0u;
500 501
  for (size_t i = 0;
       i < sparse_key_names.size() && i < sparse_grad_names.size(); ++i) {
502
    Variable* var = scope.FindVar(sparse_key_names[i]);
503 504 505
    if (var == nullptr) {
      continue;
    }
506
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
507 508
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
509 510
      exit(-1);
    }
511
    size_t len = tensor->numel();
512
    int64_t* ids = tensor->data<int64_t>();
T
Thunderbrook 已提交
513 514 515 516
    int slot = 0;
    if (dump_slot) {
      slot = boost::lexical_cast<int>(sparse_key_names[i]);
    }
517
    Variable* g_var = scope.FindVar(sparse_grad_names[i]);
518 519 520
    if (g_var == nullptr) {
      continue;
    }
521 522 523 524
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
525
    }
526 527
    float* g = g_tensor->data<float>();

528 529 530 531 532 533 534
    if (scale_sparse_gradient_with_batch_size_ && grad_dim > 0) {
      int dim = emb_dim + offset;
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / dim, dim);
      g_mat.rightCols(grad_dim) *= batch_size;
    }
535 536 537 538 539
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += emb_dim;
        continue;
      }
540
      sparse_push_keys->push_back(ids[id_idx]);
541
      CHECK(fea_idx < (*push_values).size());
T
Thunderbrook 已提交
542

543
      if (use_cvm || no_cvm) {
T
Thunderbrook 已提交
544
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
545 546
               sizeof(float) * emb_dim);
      } else {
547
        CHECK(fea_idx < fea_labels.size());
T
Thunderbrook 已提交
548
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
549
               sizeof(float) * emb_dim);
T
Thunderbrook 已提交
550 551 552 553 554 555
        (*push_values)[fea_idx][show_index] = 1.0f;
        (*push_values)[fea_idx][click_index] =
            static_cast<float>(fea_labels[fea_idx]);
      }
      if (dump_slot) {
        (*push_values)[fea_idx][0] = static_cast<float>(slot);
556
      }
557 558 559 560
      g += emb_dim;
      fea_idx++;
    }
  }
561 562 563 564 565 566 567 568 569 570 571 572 573
  // slots whose embedding has been stop gradient or
  // not involved in forward-backward
  uint64_t no_grad_fea_num = 0u;
  for (size_t i = sparse_grad_names.size(); i < sparse_key_names.size(); ++i) {
    Variable* var = scope.FindVar(sparse_key_names[i]);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
    }
574
    size_t len = tensor->numel();
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    int64_t* ids = tensor->data<int64_t>();
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        continue;
      }
      ++no_grad_fea_num;
    }
  }
  CHECK(fea_idx + no_grad_fea_num == fea_keys.size())
      << "fea_idx: " << fea_idx << " no_grad_fea_num: " << no_grad_fea_num
      << " features size: " << fea_keys.size();
  CHECK(fea_idx == sparse_push_keys->size());
  if (fea_idx == 0) {
    return;
  }
590
  std::vector<float*> push_g_vec;
591
  for (auto i = 0u; i < sparse_push_keys->size(); ++i) {
592 593 594
    push_g_vec.push_back((*push_values)[i].data());
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
595 596
      table_id, sparse_push_keys->data(), (const float**)push_g_vec.data(),
      sparse_push_keys->size());
597 598 599 600
  push_sparse_status->push_back(std::move(status));
#endif
}

601 602 603 604
void FleetWrapper::LoadFromPaddleModel(Scope& scope, const uint64_t table_id,
                                       std::vector<std::string> var_list,
                                       std::string model_path,
                                       std::string model_proto_file,
605
                                       std::vector<std::string> table_var_list,
606
                                       bool load_combine) {
607
#ifdef PADDLE_WITH_PSLIB
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
  // load ProgramDesc from model file
  auto read_proto_func = [](const std::string& filename) -> ProgramDesc {
    std::string contents;
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
    fin.seekg(0, std::ios::end);
    contents.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&contents[0], contents.size());
    fin.close();
    ProgramDesc program_desc(contents);
    return program_desc;
  };
  const ProgramDesc old_program = read_proto_func(model_proto_file);
  Scope* old_scope = new Scope();
  auto& old_block = old_program.Block(0);
  auto place = platform::CPUPlace();
  std::vector<std::string> old_param_list;

  for (auto& t : var_list) {
    VarDesc* old_var_desc = old_block.FindVar(t);
    if (old_var_desc == nullptr) {
      continue;
    }
    // init variable in scope
    Variable* old_var = old_scope->Var(old_var_desc->Name());
    InitializeVariable(old_var, old_var_desc->GetType());
    old_param_list.push_back(t);
    if (load_combine) {
      continue;
    }
    // load variable from model
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path + "/" + old_var_desc->Name()});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load", {}, {{"Out", {old_var_desc->Name()}}}, attrs);
    load_op->Run(*old_scope, place);
  }

  if (load_combine) {
    std::sort(old_param_list.begin(), old_param_list.end());
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load_combine", {}, {{"Out", old_param_list}}, attrs);
    load_op->Run(*old_scope, place);
  }

  for (auto& t : old_param_list) {
    Variable* old_var = old_scope->Var(t);
    // old model data, here we assume data type is float
    LoDTensor* old_tensor = old_var->GetMutable<LoDTensor>();
    float* old_data = old_tensor->data<float>();
    // new model data, here we assume data type is float
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* data = tensor->data<float>();
    // copy from old data to new data
    if (old_tensor->numel() > tensor->numel()) {
      memcpy(data, old_data, tensor->numel() * sizeof(float));
    } else {
      memcpy(data, old_data, old_tensor->numel() * sizeof(float));
    }
  }
  delete old_scope;
673 674
  PushDenseParamSync(scope, table_id, table_var_list);
#endif
675 676
}

677 678 679 680 681 682
void FleetWrapper::LoadModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->load(path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
683
    sleep(sleep_seconds_before_fail_exit_);
684 685 686 687 688 689 690
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret =
      pslib_ptr_->_worker_ptr->load(table_id, path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

706 707 708 709 710 711 712
void FleetWrapper::SaveModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save(path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
713
    sleep(sleep_seconds_before_fail_exit_);
714 715 716 717 718 719 720
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::SaveModel does nothing when no pslib";
#endif
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
void FleetWrapper::SaveModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret =
      pslib_ptr_->_worker_ptr->save(table_id, path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
#else
  VLOG(0) << "FleetWrapper::SaveModelOneTable does nothing when no pslib";
#endif
}

void FleetWrapper::SaveModelOneTablePrefix(const uint64_t table_id,
                                           const std::string& path,
                                           const int mode,
                                           const std::string& prefix) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save(table_id, path, std::to_string(mode),
                                           prefix);
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "save model (with prefix) of table id: " << table_id
               << ", to path: " << path << " failed";
  }
#else
  VLOG(0) << "FleetWrapper::SaveModelOneTablePrefix does nothing when no pslib";
#endif
}

753 754 755 756 757 758 759 760 761 762 763 764 765
void FleetWrapper::PrintTableStat(const uint64_t table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->print_table_stat(table_id);
  ret.wait();
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "print table stat failed";
  }
#else
  VLOG(0) << "FleetWrapper::PrintTableStat does nothing when no pslib";
#endif
}

766
double FleetWrapper::GetCacheThreshold(int table_id) {
767 768 769 770
#ifdef PADDLE_WITH_PSLIB
  double cache_threshold = 0.0;
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
771
  ret = pslib_ptr_->_worker_ptr->get_cache_threshold(table_id, cache_threshold);
772 773 774
  ret.wait();
  if (cache_threshold < 0) {
    LOG(ERROR) << "get cache threshold failed";
775
    sleep(sleep_seconds_before_fail_exit_);
776 777 778 779 780 781 782 783 784 785 786 787 788
    exit(-1);
  }
  return cache_threshold;
#else
  VLOG(0) << "FleetWrapper::GetCacheThreshold does nothing when no pslib";
  return 0.0;
#endif
}

void FleetWrapper::CacheShuffle(int table_id, const std::string& path,
                                const int mode, const double cache_threshold) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->cache_shuffle(
789
      table_id, path, std::to_string(mode), std::to_string(cache_threshold));
790 791 792 793
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "cache shuffle failed";
794
    sleep(sleep_seconds_before_fail_exit_);
795 796 797 798 799 800 801 802 803 804
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::CacheShuffle does nothing when no pslib";
#endif
}

int32_t FleetWrapper::SaveCache(int table_id, const std::string& path,
                                const int mode) {
#ifdef PADDLE_WITH_PSLIB
805 806
  auto ret =
      pslib_ptr_->_worker_ptr->save_cache(table_id, path, std::to_string(mode));
807 808 809 810
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "table save cache failed";
811
    sleep(sleep_seconds_before_fail_exit_);
812 813 814 815 816 817 818 819 820
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::SaveCache does nothing when no pslib";
  return -1;
#endif
}

821 822 823 824 825 826 827 828 829
void FleetWrapper::ShrinkSparseTable(int table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->shrink(table_id);
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

830 831 832 833 834 835 836 837 838
void FleetWrapper::ClearModel() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->clear();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ClearModel does nothing when no pslib";
#endif
}

839 840 841 842 843 844 845 846 847
void FleetWrapper::ClearOneTable(const uint64_t table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->clear(table_id);
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ClearOneTable does nothing when no pslib";
#endif
}

848 849
void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope,
                                    std::vector<std::string> var_list,
850
                                    float decay, int emb_dim) {
851 852 853 854 855 856
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
857
      VLOG(0) << "prepare shrink dense batch_sum";
858 859
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
860 861 862 863 864 865 866 867 868 869 870 871 872

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
      size_name.replace(size_name.find("batch_sum"), size_name.length(),
                        "batch_size");
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    LOG(FATAL) << "push shrink dense param failed, status[" << status << "]";
890
    sleep(sleep_seconds_before_fail_exit_);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

void FleetWrapper::ClientFlush() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ServerFlush does nothing when no pslib";
#endif
}

907 908
int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
909
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
910 911 912
  VLOG(3) << "calling FleetWrapper::RegisterClientToClientMsgHandler";
  VLOG(3) << "pslib_ptr_=" << pslib_ptr_;
  VLOG(3) << "_worker_ptr=" << pslib_ptr_->_worker_ptr;
913 914
  return pslib_ptr_->_worker_ptr->registe_client2client_msg_handler(msg_type,
                                                                    handler);
915 916 917 918
#else
  VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler"
          << " does nothing when no pslib";
#endif
X
xujiaqi01 已提交
919
  return 0;
920 921
}

922 923
std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
924
#ifdef PADDLE_WITH_PSLIB
925 926
  return pslib_ptr_->_worker_ptr->send_client2client_msg(msg_type, to_client_id,
                                                         msg);
927 928 929 930
#else
  VLOG(0) << "FleetWrapper::SendClientToClientMsg"
          << " does nothing when no pslib";
#endif
931
  return std::future<int32_t>();
X
xujiaqi01 已提交
932 933
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;
#ifdef PADDLE_WITH_PSLIB
    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
#endif
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

X
xujiaqi01 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
int32_t FleetWrapper::CopyTable(const uint64_t src_table_id,
                                const uint64_t dest_table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->copy_table(src_table_id, dest_table_id);
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "copy table failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::CopyTable does nothing when no pslib";
  return 0;
#endif
}

int32_t FleetWrapper::CopyTableByFeasign(
    const uint64_t src_table_id, const uint64_t dest_table_id,
    const std::vector<uint64_t>& feasign_list) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->copy_table_by_feasign(
      src_table_id, dest_table_id, feasign_list.data(), feasign_list.size());
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "copy table by feasign failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::CopyTableByFeasign does nothing when no pslib";
  return 0;
#endif
}
989

990 991
}  // end namespace framework
}  // end namespace paddle