fleet_wrapper.cc 26.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
30
#include <algorithm>
X
xujiaqi01 已提交
31
#include <utility>
32
#include "paddle/fluid/framework/data_feed.h"
33
#include "paddle/fluid/framework/op_registry.h"
34
#include "paddle/fluid/framework/scope.h"
35 36 37 38 39 40

namespace paddle {
namespace framework {

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
41 42 43 44 45
bool FleetWrapper::is_initialized_ = false;

#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> FleetWrapper::pslib_ptr_ = NULL;
#endif
46

47 48 49 50 51 52 53 54
void FleetWrapper::SetClient2ClientConfig(int request_timeout_ms,
                                          int connect_timeout_ms,
                                          int max_retry) {
  client2client_request_timeout_ms_ = request_timeout_ms;
  client2client_connect_timeout_ms_ = connect_timeout_ms;
  client2client_max_retry_ = max_retry;
}

55 56 57
void FleetWrapper::InitServer(const std::string& dist_desc, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
58
    VLOG(3) << "Going to init server";
59 60 61 62 63
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_server(dist_desc, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
64
    VLOG(3) << "Server can be initialized only once";
65 66 67 68 69 70 71 72 73
  }
#endif
}

void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<uint64_t>& host_sign_list,
                              int node_num, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
74
    VLOG(3) << "Going to init worker";
75 76 77 78 79 80 81
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_worker(dist_desc,
                            const_cast<uint64_t*>(host_sign_list.data()),
                            node_num, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
82
    VLOG(3) << "Worker can be initialized only once";
83 84 85 86 87 88
  }
#endif
}

void FleetWrapper::StopServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
89
  VLOG(3) << "Going to stop server";
90 91 92 93
  pslib_ptr_->stop_server();
#endif
}

94 95 96 97 98 99 100
void FleetWrapper::FinalizeWorker() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to finalize worker";
  pslib_ptr_->finalize_worker();
#endif
}

101 102
uint64_t FleetWrapper::RunServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
103
  VLOG(3) << "Going to run server";
104 105 106 107 108 109 110 111 112
  return pslib_ptr_->run_server();
#else
  return 0;
#endif
}

void FleetWrapper::GatherServers(const std::vector<uint64_t>& host_sign_list,
                                 int node_num) {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
113
  VLOG(3) << "Going to gather server ips";
114 115 116 117 118
  pslib_ptr_->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
                             node_num);
#endif
}

D
dongdaxiang 已提交
119
void FleetWrapper::GatherClients(const std::vector<uint64_t>& host_sign_list) {
X
xjqbest 已提交
120 121 122
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to gather client ips";
  size_t len = host_sign_list.size();
D
dongdaxiang 已提交
123
  pslib_ptr_->gather_clients(const_cast<uint64_t*>(host_sign_list.data()), len);
X
xjqbest 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137
#endif
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to get client info";
  return pslib_ptr_->get_client_info();
#endif
  return std::vector<uint64_t>();
}

void FleetWrapper::CreateClient2ClientConnection() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to create client2client connection";
138 139 140
  pslib_ptr_->create_client2client_connection(client2client_request_timeout_ms_,
                                              client2client_connect_timeout_ms_,
                                              client2client_max_retry_);
X
xjqbest 已提交
141 142 143
#endif
}

144 145 146
void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
147 148
    std::vector<std::vector<float>>* fea_values, int fea_value_dim,
    const std::vector<std::string>& var_emb_names) {
149 150 151 152 153 154
#ifdef PADDLE_WITH_PSLIB
  std::vector<::std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
155 156
  for (size_t var_index = 0; var_index < var_names.size(); ++var_index) {
    const std::string& name = var_names[var_index];
157
    Variable* var = scope.FindVar(name);
158 159 160
    if (var == nullptr) {
      continue;
    }
161
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
162
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
163 164
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
165 166 167 168 169 170 171 172

    // skip slots which do not have embedding
    const std::string& emb_name = var_emb_names[var_index];
    Variable* emb_var = scope.FindVar(emb_name);
    if (emb_var == nullptr) {
      continue;
    }

173 174 175 176 177 178 179
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
D
dongdaxiang 已提交
180 181 182 183 184 185 186 187 188 189 190
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
  auto status = pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
  pull_sparse_status.push_back(std::move(status));
191 192 193 194 195
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
196
      sleep(sleep_seconds_before_fail_exit_);
197 198 199 200 201 202 203 204 205 206 207
      exit(-1);
    }
  }
#endif
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* pull_dense_status) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
208 209
  auto& regions = _regions[tid];
  regions.clear();
210 211 212
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    Variable* var = scope.FindVar(var_names[i]);
213 214 215
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
216
    regions[i] = std::move(reg);
217 218 219 220 221 222 223 224 225 226 227
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
228 229
  auto& regions = _regions[tid];
  regions.clear();
230 231 232 233 234 235 236 237 238 239 240 241 242 243
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  status.wait();
#endif
}

244
void FleetWrapper::PushDenseParamSync(
D
dongdaxiang 已提交
245
    const Scope& scope, const uint64_t table_id,
246 247 248 249 250 251
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  auto place = platform::CPUPlace();
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
X
xjqbest 已提交
252
    CHECK(var != nullptr) << "var[" << t << "] not found";
253
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
254
    float* g = tensor->mutable_data<float>(place);
255 256 257
    paddle::ps::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
258 259 260 261 262
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
263 264 265
#endif
}

D
dongdaxiang 已提交
266 267 268 269
void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

270 271 272
void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
273 274
    std::vector<::std::future<int32_t>>* push_sparse_status,
    float scale_datanorm, int batch_size) {
275 276 277 278 279 280 281
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
282 283 284 285 286 287 288 289 290 291 292 293 294 295
    if (scale_datanorm >= 0) {
      if (t.find(".batch_size@GRAD") != std::string::npos ||
          t.find(".batch_sum@GRAD") != std::string::npos) {
        Eigen::Map<Eigen::MatrixXf> mat(g, 1, count);
        float scale = 1.0 / batch_size;
        mat *= scale;
      } else if (t.find(".batch_square_sum@GRAD") != std::string::npos) {
        VLOG(3) << "epsilon: " << scale_datanorm;
        for (int i = 0; i < count; ++i) {
          g[i] = (g[i] - batch_size * scale_datanorm) / batch_size +
                 batch_size * scale_datanorm;
        }
      }
    }
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
  auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
  push_sparse_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
311
    std::vector<::std::future<int32_t>>* push_sparse_status,
312
    const int batch_size, const bool use_cvm, const bool dump_slot,
313
    std::vector<uint64_t>* sparse_push_keys, const bool no_cvm) {
314 315
#ifdef PADDLE_WITH_PSLIB
  int offset = 2;
T
Thunderbrook 已提交
316
  int slot_offset = 0;
317
  int grad_dim = emb_dim;
T
Thunderbrook 已提交
318 319
  int show_index = 0;
  int click_index = 1;
320 321 322 323
  if (use_cvm) {
    offset = 0;
    grad_dim = emb_dim - 2;
  }
324 325 326 327
  if (no_cvm) {
    offset = 0;
    grad_dim = emb_dim;
  }
T
Thunderbrook 已提交
328 329 330 331 332
  if (dump_slot) {
    slot_offset = 1;
    show_index = 1;
    click_index = 2;
  }
333
  CHECK_GE(grad_dim, 0);
334

335 336
  sparse_push_keys->clear();
  sparse_push_keys->reserve(fea_keys.size() + 1);
337 338
  push_values->resize(fea_keys.size() + 1);
  for (auto& t : *push_values) {
T
Thunderbrook 已提交
339
    t.resize(emb_dim + offset + slot_offset);
340
  }
341
  uint64_t fea_idx = 0u;
342 343
  for (size_t i = 0;
       i < sparse_key_names.size() && i < sparse_grad_names.size(); ++i) {
344
    Variable* var = scope.FindVar(sparse_key_names[i]);
345 346 347
    if (var == nullptr) {
      continue;
    }
348
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
349 350
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
351 352 353 354
      exit(-1);
    }
    int len = tensor->numel();
    int64_t* ids = tensor->data<int64_t>();
T
Thunderbrook 已提交
355 356 357 358
    int slot = 0;
    if (dump_slot) {
      slot = boost::lexical_cast<int>(sparse_key_names[i]);
    }
359
    Variable* g_var = scope.FindVar(sparse_grad_names[i]);
360 361 362
    if (g_var == nullptr) {
      continue;
    }
363 364 365 366
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
367
    }
368 369
    float* g = g_tensor->data<float>();

370 371 372 373 374 375 376
    if (scale_sparse_gradient_with_batch_size_ && grad_dim > 0) {
      int dim = emb_dim + offset;
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / dim, dim);
      g_mat.rightCols(grad_dim) *= batch_size;
    }
377 378 379 380 381
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += emb_dim;
        continue;
      }
382
      sparse_push_keys->push_back(ids[id_idx]);
383
      CHECK(fea_idx < (*push_values).size());
T
Thunderbrook 已提交
384

385
      if (use_cvm || no_cvm) {
T
Thunderbrook 已提交
386
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
387 388
               sizeof(float) * emb_dim);
      } else {
389
        CHECK(fea_idx < fea_labels.size());
T
Thunderbrook 已提交
390
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
391
               sizeof(float) * emb_dim);
T
Thunderbrook 已提交
392 393 394 395 396 397
        (*push_values)[fea_idx][show_index] = 1.0f;
        (*push_values)[fea_idx][click_index] =
            static_cast<float>(fea_labels[fea_idx]);
      }
      if (dump_slot) {
        (*push_values)[fea_idx][0] = static_cast<float>(slot);
398
      }
399 400 401 402
      g += emb_dim;
      fea_idx++;
    }
  }
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
  // slots whose embedding has been stop gradient or
  // not involved in forward-backward
  uint64_t no_grad_fea_num = 0u;
  for (size_t i = sparse_grad_names.size(); i < sparse_key_names.size(); ++i) {
    Variable* var = scope.FindVar(sparse_key_names[i]);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
    }
    int len = tensor->numel();
    int64_t* ids = tensor->data<int64_t>();
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        continue;
      }
      ++no_grad_fea_num;
    }
  }
  CHECK(fea_idx + no_grad_fea_num == fea_keys.size())
      << "fea_idx: " << fea_idx << " no_grad_fea_num: " << no_grad_fea_num
      << " features size: " << fea_keys.size();
  CHECK(fea_idx == sparse_push_keys->size());
  if (fea_idx == 0) {
    return;
  }
432
  std::vector<float*> push_g_vec;
433
  for (auto i = 0u; i < sparse_push_keys->size(); ++i) {
434 435 436
    push_g_vec.push_back((*push_values)[i].data());
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
437 438
      table_id, sparse_push_keys->data(), (const float**)push_g_vec.data(),
      sparse_push_keys->size());
439 440 441 442
  push_sparse_status->push_back(std::move(status));
#endif
}

443 444 445 446
void FleetWrapper::LoadFromPaddleModel(Scope& scope, const uint64_t table_id,
                                       std::vector<std::string> var_list,
                                       std::string model_path,
                                       std::string model_proto_file,
447
                                       std::vector<std::string> table_var_list,
448
                                       bool load_combine) {
449
#ifdef PADDLE_WITH_PSLIB
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  // load ProgramDesc from model file
  auto read_proto_func = [](const std::string& filename) -> ProgramDesc {
    std::string contents;
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
    fin.seekg(0, std::ios::end);
    contents.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&contents[0], contents.size());
    fin.close();
    ProgramDesc program_desc(contents);
    return program_desc;
  };
  const ProgramDesc old_program = read_proto_func(model_proto_file);
  Scope* old_scope = new Scope();
  auto& old_block = old_program.Block(0);
  auto place = platform::CPUPlace();
  std::vector<std::string> old_param_list;

  for (auto& t : var_list) {
    VarDesc* old_var_desc = old_block.FindVar(t);
    if (old_var_desc == nullptr) {
      continue;
    }
    // init variable in scope
    Variable* old_var = old_scope->Var(old_var_desc->Name());
    InitializeVariable(old_var, old_var_desc->GetType());
    old_param_list.push_back(t);
    if (load_combine) {
      continue;
    }
    // load variable from model
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path + "/" + old_var_desc->Name()});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load", {}, {{"Out", {old_var_desc->Name()}}}, attrs);
    load_op->Run(*old_scope, place);
  }

  if (load_combine) {
    std::sort(old_param_list.begin(), old_param_list.end());
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load_combine", {}, {{"Out", old_param_list}}, attrs);
    load_op->Run(*old_scope, place);
  }

  for (auto& t : old_param_list) {
    Variable* old_var = old_scope->Var(t);
    // old model data, here we assume data type is float
    LoDTensor* old_tensor = old_var->GetMutable<LoDTensor>();
    float* old_data = old_tensor->data<float>();
    // new model data, here we assume data type is float
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* data = tensor->data<float>();
    // copy from old data to new data
    if (old_tensor->numel() > tensor->numel()) {
      memcpy(data, old_data, tensor->numel() * sizeof(float));
    } else {
      memcpy(data, old_data, old_tensor->numel() * sizeof(float));
    }
  }
  delete old_scope;
515 516
  PushDenseParamSync(scope, table_id, table_var_list);
#endif
517 518
}

519 520 521 522 523 524
void FleetWrapper::LoadModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->load(path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
525
    sleep(sleep_seconds_before_fail_exit_);
526 527 528 529 530 531 532
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret =
      pslib_ptr_->_worker_ptr->load(table_id, path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

548 549 550 551 552 553 554
void FleetWrapper::SaveModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save(path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
555
    sleep(sleep_seconds_before_fail_exit_);
556 557 558 559 560 561 562
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::SaveModel does nothing when no pslib";
#endif
}

563 564 565 566 567 568 569 570 571 572 573 574 575
void FleetWrapper::PrintTableStat(const uint64_t table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->print_table_stat(table_id);
  ret.wait();
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "print table stat failed";
  }
#else
  VLOG(0) << "FleetWrapper::PrintTableStat does nothing when no pslib";
#endif
}

576
double FleetWrapper::GetCacheThreshold(int table_id) {
577 578 579 580
#ifdef PADDLE_WITH_PSLIB
  double cache_threshold = 0.0;
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
581
  ret = pslib_ptr_->_worker_ptr->get_cache_threshold(table_id, cache_threshold);
582 583 584
  ret.wait();
  if (cache_threshold < 0) {
    LOG(ERROR) << "get cache threshold failed";
585
    sleep(sleep_seconds_before_fail_exit_);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    exit(-1);
  }
  return cache_threshold;
#else
  VLOG(0) << "FleetWrapper::GetCacheThreshold does nothing when no pslib";
  return 0.0;
#endif
}

void FleetWrapper::CacheShuffle(int table_id, const std::string& path,
                                const int mode, const double cache_threshold) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->cache_shuffle(
      0, path, std::to_string(mode), std::to_string(cache_threshold));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "cache shuffle failed";
604
    sleep(sleep_seconds_before_fail_exit_);
605 606 607 608 609 610 611 612 613 614
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::CacheShuffle does nothing when no pslib";
#endif
}

int32_t FleetWrapper::SaveCache(int table_id, const std::string& path,
                                const int mode) {
#ifdef PADDLE_WITH_PSLIB
615 616
  auto ret =
      pslib_ptr_->_worker_ptr->save_cache(table_id, path, std::to_string(mode));
617 618 619 620
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "table save cache failed";
621
    sleep(sleep_seconds_before_fail_exit_);
622 623 624 625 626 627 628 629 630
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::SaveCache does nothing when no pslib";
  return -1;
#endif
}

631 632 633 634 635 636 637 638 639
void FleetWrapper::ShrinkSparseTable(int table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->shrink(table_id);
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

640 641 642 643 644 645 646 647 648
void FleetWrapper::ClearModel() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->clear();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ClearModel does nothing when no pslib";
#endif
}

649 650
void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope,
                                    std::vector<std::string> var_list,
651
                                    float decay, int emb_dim) {
652 653 654 655 656 657
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
658
      VLOG(0) << "prepare shrink dense batch_sum";
659 660
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
661 662 663 664 665 666 667 668 669 670 671 672 673

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
      size_name.replace(size_name.find("batch_sum"), size_name.length(),
                        "batch_size");
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    LOG(FATAL) << "push shrink dense param failed, status[" << status << "]";
691
    sleep(sleep_seconds_before_fail_exit_);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

void FleetWrapper::ClientFlush() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ServerFlush does nothing when no pslib";
#endif
}

708 709
int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
710
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
711 712 713
  VLOG(3) << "calling FleetWrapper::RegisterClientToClientMsgHandler";
  VLOG(3) << "pslib_ptr_=" << pslib_ptr_;
  VLOG(3) << "_worker_ptr=" << pslib_ptr_->_worker_ptr;
714 715
  return pslib_ptr_->_worker_ptr->registe_client2client_msg_handler(msg_type,
                                                                    handler);
716 717 718 719
#else
  VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler"
          << " does nothing when no pslib";
#endif
X
xujiaqi01 已提交
720
  return 0;
721 722
}

723 724
std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
725
#ifdef PADDLE_WITH_PSLIB
726 727
  return pslib_ptr_->_worker_ptr->send_client2client_msg(msg_type, to_client_id,
                                                         msg);
728 729 730 731
#else
  VLOG(0) << "FleetWrapper::SendClientToClientMsg"
          << " does nothing when no pslib";
#endif
732
  return std::future<int32_t>();
X
xujiaqi01 已提交
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;
#ifdef PADDLE_WITH_PSLIB
    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
#endif
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

X
xujiaqi01 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
int32_t FleetWrapper::CopyTable(const uint64_t src_table_id,
                                const uint64_t dest_table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->copy_table(src_table_id, dest_table_id);
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "copy table failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::CopyTable does nothing when no pslib";
  return 0;
#endif
}

int32_t FleetWrapper::CopyTableByFeasign(
    const uint64_t src_table_id, const uint64_t dest_table_id,
    const std::vector<uint64_t>& feasign_list) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->copy_table_by_feasign(
      src_table_id, dest_table_id, feasign_list.data(), feasign_list.size());
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "copy table by feasign failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::CopyTableByFeasign does nothing when no pslib";
  return 0;
#endif
}
790

791 792
}  // end namespace framework
}  // end namespace paddle