parameter_prefetch.cc 11.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
wanghuancoder 已提交
15
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
Q
Qiao Longfei 已提交
16
#include <memory>
Q
Qiao Longfei 已提交
17
#include <set>
Q
Qiao Longfei 已提交
18
#include <unordered_map>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20 21
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
W
Wu Yi 已提交
22
#include "paddle/fluid/operators/distributed/distributed.h"
W
wanghuancoder 已提交
23 24 25 26 27 28 29

namespace paddle {
namespace framework {
class ExecutionContext;
class Scope;
}  // namespace framework
}  // namespace paddle
Q
Qiao Longfei 已提交
30 31 32 33 34

namespace paddle {
namespace operators {
namespace distributed {

W
wanghuancoder 已提交
35 36
class RPCClient;

37
using LoDTensor = framework::LoDTensor;
Q
Qiao Longfei 已提交
38 39 40 41
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

Q
Qiao Longfei 已提交
42
static void SplitIdsIntoMultipleVarsBySection(
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    const std::vector<int64_t> &in_ids,
    const std::vector<std::string> &in_varnames, const int tables,
    const int pservers, const bool is_distibuted, framework::Scope *scope,
    std::vector<std::vector<int64_t>> *splited_ids,
    std::vector<std::vector<int64_t>> *origin_ids) {
  PADDLE_ENFORCE_EQ(
      in_varnames.size(), tables,
      platform::errors::OutOfRange(
          "send varnames size: %d not equal table number: %d, internal error",
          in_varnames.size(), tables));

  PADDLE_ENFORCE_LE(
      tables, pservers,
      platform::errors::OutOfRange("table number %d not equal or less than "
                                   "pserver number: %d, internal error",
                                   tables, pservers));
Q
Qiao Longfei 已提交
59 60 61

  auto place = platform::CPUPlace();

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  std::set<int64_t> st(in_ids.begin(), in_ids.end());
  std::vector<int64_t> all_ids;
  all_ids.assign(st.begin(), st.end());

  splited_ids->resize(tables);
  origin_ids->resize(tables);

  if (is_distibuted) {
    for (auto &id : all_ids) {
      auto pserver_id = id % pservers;
      (*splited_ids)[pserver_id].push_back(id);
      (*origin_ids)[pserver_id].push_back(id);
    }
  } else {
    for (auto &id : all_ids) {
      auto pserver_id = id % pservers;
      (*origin_ids)[pserver_id].push_back(id);
      id = id / pservers;
      (*splited_ids)[pserver_id].push_back(id);
    }
  }

  for (size_t i = 0; i < in_varnames.size(); ++i) {
    auto *id_tensor =
        scope->Var(in_varnames[i])->GetMutable<framework::LoDTensor>();

    auto &ids = (*splited_ids)[i];
Q
Qiao Longfei 已提交
89
    if (!ids.empty()) {
90
      auto *id_tensor_data = id_tensor->mutable_data<int64_t>(
Q
Qiao Longfei 已提交
91 92 93 94 95 96
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

97
typedef std::vector<std::pair<std::string, std::string>> TableAndEndpoints;
Q
Qiao Longfei 已提交
98

99
void prefetch_core(
100 101 102 103 104 105 106 107 108 109 110
    const std::vector<int64_t> &ids, const TableAndEndpoints &tables,
    const framework::ExecutionContext &context, const framework::Scope &scope,
    const bool is_distributed,
    std::unordered_map<int64_t, std::vector<float>> *recved_vec_map) {
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
          context.Attr<int>("trainer_id"));

  int pservers = context.Attr<int>("pserver_num");

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
C
Chengmo 已提交
111
  auto &actual_ctx = *pool.Get(platform::CPUPlace());
Q
Qiao Longfei 已提交
112

113 114 115 116 117 118 119
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();

  std::vector<std::string> in_var_names;
  std::vector<std::string> out_var_names;
  for (size_t i = 0; i < tables.size(); ++i) {
    in_var_names.push_back("prefetch_send@" + tables[i].second);
    out_var_names.push_back("prefetch_recv@" + tables[i].second);
Q
Qiao Longfei 已提交
120 121
  }

122 123 124 125 126
  std::vector<std::vector<int64_t>> split_ids;
  std::vector<std::vector<int64_t>> origin_ids;
  SplitIdsIntoMultipleVarsBySection(ids, in_var_names, tables.size(), pservers,
                                    is_distributed, local_scope.get(),
                                    &split_ids, &origin_ids);
127 128

  // create output var in local scope
129
  for (auto &name : out_var_names) {
130 131
    local_scope->Var(name)->GetMutable<framework::LoDTensor>();
  }
T
tangwei12 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145
  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < in_var_names.size(); i++) {
    if (NeedSend(*local_scope.get(), in_var_names[i])) {
      VLOG(3) << "sending " << in_var_names[i] << " to " << tables[i].second
              << " to get " << out_var_names[i] << " back";
      rets.push_back(rpc_client->AsyncPrefetchVar(
          tables[i].second, actual_ctx, *local_scope.get(), in_var_names[i],
          out_var_names[i], tables[i].first));
    } else {
      VLOG(3) << "don't send no-initialied variable: " << out_var_names[i];
    }
  }
  for (size_t i = 0; i < rets.size(); i++) {
146 147
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
Q
Qiao Longfei 已提交
148
  }
Q
Qiao Longfei 已提交
149

150 151
  for (size_t o_idx = 0; o_idx < out_var_names.size(); ++o_idx) {
    auto &ids_in_this_section = origin_ids[o_idx];
152

Q
Qiao Longfei 已提交
153
    if (!ids_in_this_section.empty()) {
154 155 156 157
      auto &prefetch_out_var =
          local_scope->Var(out_var_names[o_idx])->Get<framework::LoDTensor>();
      const auto *out_var_data = prefetch_out_var.data<float>();
      auto &dims = prefetch_out_var.dims();
Q
Qiao Longfei 已提交
158

M
MRXLT 已提交
159 160 161 162 163 164 165 166
      PADDLE_ENFORCE_EQ(dims.size(), 2,
                        platform::errors::InvalidArgument(
                            "The size of Tensor dims must be 2."));
      PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0],
                        platform::errors::InvalidArgument(
                            "The size of ids in this section must equal to "
                            "dims[0]: %s, but got %s",
                            dims[0], ids_in_this_section.size()));
Q
Qiao Longfei 已提交
167 168 169

      auto row_numel = dims[1];

170
      for (int64_t i = 0; i < dims[0]; ++i) {
171
        auto origin_id = ids_in_this_section[i];
172
        std::vector<float> vecs(row_numel);
C
Chengmo 已提交
173

174 175
        std::copy_n(out_var_data + i * row_numel, row_numel, vecs.begin());
        (*recved_vec_map)[origin_id] = vecs;
Q
Qiao Longfei 已提交
176
      }
Q
Qiao Longfei 已提交
177
    } else {
178
      VLOG(3) << "ids in this section is empty";
Q
Qiao Longfei 已提交
179 180 181 182
    }
  }
}

183 184 185 186 187 188 189 190 191
void prefetch(const std::string &id_name, const std::string &out_name,
              const std::string &persistable_var_name,
              const bool is_distributed,
              const std::vector<std::string> &table_names,
              const std::vector<std::string> &endpoints,
              const framework::ExecutionContext &context,
              const framework::Scope &scope) {
  prefetchs({id_name}, {out_name}, persistable_var_name, is_distributed,
            table_names, endpoints, context, scope);
192
}
Q
Qiao Longfei 已提交
193

194 195 196 197 198 199 200 201
void prefetchs(const std::vector<std::string> &id_var_names,
               const std::vector<std::string> &out_var_names,
               const std::string &persistable_var_name,
               const bool is_distributed,
               const std::vector<std::string> &table_names,
               const std::vector<std::string> &endpoints,
               const framework::ExecutionContext &context,
               const framework::Scope &scope) {
T
tangwei12 已提交
202
  auto vec_dim_1 = 0;
203 204 205 206 207 208 209 210 211
  auto vec_dim_0 = 0;
  framework::Variable *var = scope.FindVar(persistable_var_name);

  if (var->IsType<SelectedRows>()) {
    vec_dim_1 = var->Get<framework::SelectedRows>().value().dims()[1];
  } else {
    vec_dim_0 = var->Get<framework::LoDTensor>().dims()[0];
    vec_dim_1 = var->Get<framework::LoDTensor>().dims()[1];
  }
T
tangwei12 已提交
212 213 214 215

  PADDLE_ENFORCE_GT(vec_dim_1, 0,
                    platform::errors::InvalidArgument(
                        "lookup table var's dim must gather than 0"));
216 217 218 219

  const auto place =
      scope.FindVar(id_var_names[0])->Get<framework::LoDTensor>().place();

C
Chengmo 已提交
220
  std::vector<std::vector<int64_t>> ids_group;
221
  std::vector<int64_t> ids_union;
C
Chengmo 已提交
222
  std::vector<framework::LoD> ids_lods;
223 224
  TableAndEndpoints tables;

225
  for (auto &id_name : id_var_names) {
C
Chengmo 已提交
226 227 228 229 230 231
    auto &id_tensor = scope.FindVar(id_name)->Get<framework::LoDTensor>();
    std::vector<int64_t> ids;
    TensorToVector(id_tensor, context.device_context(), &ids);
    ids_union.insert(ids_union.end(), ids.begin(), ids.end());
    ids_group.push_back(ids);
    ids_lods.push_back(id_tensor.lod());
Q
Qiao Longfei 已提交
232 233
  }

234 235
  std::unordered_set<int64_t> s(ids_union.begin(), ids_union.end());
  ids_union.assign(s.begin(), s.end());
Q
Qiao Longfei 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248 249
  for (auto &i : ids_union) {
    PADDLE_ENFORCE_GE(
        i, 0, platform::errors::OutOfRange(
                  "each element in embedding should be larger or equal 0"));
    if (!is_distributed) {
      PADDLE_ENFORCE_LT(
          i, vec_dim_0,
          platform::errors::OutOfRange(
              "embedding id must in [0, %d) when is_distributed False",
              vec_dim_0));
    }
  }

250
  for (size_t i = 0; i < table_names.size(); i++) {
251
    tables.push_back(std::make_pair(table_names[i], endpoints[i]));
Q
Qiao Longfei 已提交
252 253
  }

254
  std::unordered_map<int64_t, std::vector<float>> recved_vec_map;
255
  prefetch_core(ids_union, tables, context, scope, is_distributed,
256 257 258 259 260 261
                &recved_vec_map);

  auto padding_idx = distributed::kNoPadding;

  if (context.HasAttr("padding_idx")) {
    padding_idx = context.Attr<int64_t>("padding_idx");
Q
Qiao Longfei 已提交
262
  }
Q
Qiao Longfei 已提交
263

264
  for (size_t i = 0; i < out_var_names.size(); i++) {
C
Chengmo 已提交
265 266
    std::vector<int64_t> ids = ids_group[i];
    auto ids_size = ids.size();
267 268
    auto *out_t =
        scope.FindVar(out_var_names[i])->GetMutable<framework::LoDTensor>();
C
Chengmo 已提交
269 270 271
    out_t->set_lod(ids_lods[i]);
    out_t->Resize(
        framework::make_ddim({static_cast<int64_t>(ids_size), vec_dim_1}));
272
    auto *out_d = out_t->mutable_data<float>(place);
273

C
Chengmo 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    if (platform::is_cpu_place(out_t->place())) {
      for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
        const auto &id = ids[idx];
        if (padding_idx != distributed::kNoPadding && id == padding_idx) {
          memset(out_d + idx * vec_dim_1, 0, sizeof(float) * vec_dim_1);
        } else {
          std::copy_n(recved_vec_map[id].begin(), vec_dim_1,
                      out_d + idx * vec_dim_1);
        }
      }
    } else {
#ifdef PADDLE_WITH_CUDA
      for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
        const auto &id = ids[idx];
        auto stream = context.cuda_device_context().stream();
        if (padding_idx != distributed::kNoPadding && id == padding_idx) {
          platform::GpuMemsetAsync(out_d + idx * vec_dim_1, 0,
                                   sizeof(float) * vec_dim_1, stream);
        } else {
          auto &cpu_place =
              BOOST_GET_CONST(platform::CPUPlace,
                              paddle::platform::CPUDeviceContext().GetPlace());
          auto &gpu_place =
              BOOST_GET_CONST(platform::CUDAPlace, out_t->place());
          memory::Copy(gpu_place, out_d + idx * vec_dim_1, cpu_place,
                       &recved_vec_map[id][0], sizeof(float) * vec_dim_1,
                       stream);
        }
302
      }
C
Chengmo 已提交
303 304 305 306
#else
      PADDLE_ENFORCE(true, platform::errors::PermissionDenied(
                               "Paddle is not compiled with GPU!"));
#endif
307
    }
Q
Qiao Longfei 已提交
308 309 310 311 312 313
  }
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle