parameter_prefetch.cc 11.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <memory>
Q
Qiao Longfei 已提交
17 18
#include <set>
#include <string>
Q
Qiao Longfei 已提交
19
#include <unordered_map>
20
#include <unordered_set>
Q
Qiao Longfei 已提交
21 22 23 24 25 26 27 28 29
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_prefetch.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

W
Wu Yi 已提交
30
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
31 32 33 34 35 36 37 38
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

39
using LoDTensor = framework::LoDTensor;
Q
Qiao Longfei 已提交
40 41 42 43
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

Q
Qiao Longfei 已提交
44
static void SplitIdsIntoMultipleVarsBySection(
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    const std::vector<int64_t> &in_ids,
    const std::vector<std::string> &in_varnames, const int tables,
    const int pservers, const bool is_distibuted, framework::Scope *scope,
    std::vector<std::vector<int64_t>> *splited_ids,
    std::vector<std::vector<int64_t>> *origin_ids) {
  PADDLE_ENFORCE_EQ(
      in_varnames.size(), tables,
      platform::errors::OutOfRange(
          "send varnames size: %d not equal table number: %d, internal error",
          in_varnames.size(), tables));

  PADDLE_ENFORCE_LE(
      tables, pservers,
      platform::errors::OutOfRange("table number %d not equal or less than "
                                   "pserver number: %d, internal error",
                                   tables, pservers));
Q
Qiao Longfei 已提交
61 62 63

  auto place = platform::CPUPlace();

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  std::set<int64_t> st(in_ids.begin(), in_ids.end());
  std::vector<int64_t> all_ids;
  all_ids.assign(st.begin(), st.end());

  splited_ids->resize(tables);
  origin_ids->resize(tables);

  if (is_distibuted) {
    for (auto &id : all_ids) {
      auto pserver_id = id % pservers;
      (*splited_ids)[pserver_id].push_back(id);
      (*origin_ids)[pserver_id].push_back(id);
    }
  } else {
    for (auto &id : all_ids) {
      auto pserver_id = id % pservers;
      (*origin_ids)[pserver_id].push_back(id);
      id = id / pservers;
      (*splited_ids)[pserver_id].push_back(id);
    }
  }

  for (size_t i = 0; i < in_varnames.size(); ++i) {
    auto *id_tensor =
        scope->Var(in_varnames[i])->GetMutable<framework::LoDTensor>();

    auto &ids = (*splited_ids)[i];
Q
Qiao Longfei 已提交
91
    if (!ids.empty()) {
92
      auto *id_tensor_data = id_tensor->mutable_data<int64_t>(
Q
Qiao Longfei 已提交
93 94 95 96 97 98
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

99
typedef std::vector<std::pair<std::string, std::string>> TableAndEndpoints;
Q
Qiao Longfei 已提交
100

101
void prefetch_core(
102 103 104 105 106 107 108 109 110 111 112
    const std::vector<int64_t> &ids, const TableAndEndpoints &tables,
    const framework::ExecutionContext &context, const framework::Scope &scope,
    const bool is_distributed,
    std::unordered_map<int64_t, std::vector<float>> *recved_vec_map) {
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
          context.Attr<int>("trainer_id"));

  int pservers = context.Attr<int>("pserver_num");

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
C
Chengmo 已提交
113
  auto &actual_ctx = *pool.Get(platform::CPUPlace());
Q
Qiao Longfei 已提交
114

115 116 117 118 119 120 121
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();

  std::vector<std::string> in_var_names;
  std::vector<std::string> out_var_names;
  for (size_t i = 0; i < tables.size(); ++i) {
    in_var_names.push_back("prefetch_send@" + tables[i].second);
    out_var_names.push_back("prefetch_recv@" + tables[i].second);
Q
Qiao Longfei 已提交
122 123
  }

124 125 126 127 128
  std::vector<std::vector<int64_t>> split_ids;
  std::vector<std::vector<int64_t>> origin_ids;
  SplitIdsIntoMultipleVarsBySection(ids, in_var_names, tables.size(), pservers,
                                    is_distributed, local_scope.get(),
                                    &split_ids, &origin_ids);
129 130

  // create output var in local scope
131
  for (auto &name : out_var_names) {
132 133
    local_scope->Var(name)->GetMutable<framework::LoDTensor>();
  }
T
tangwei12 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147
  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < in_var_names.size(); i++) {
    if (NeedSend(*local_scope.get(), in_var_names[i])) {
      VLOG(3) << "sending " << in_var_names[i] << " to " << tables[i].second
              << " to get " << out_var_names[i] << " back";
      rets.push_back(rpc_client->AsyncPrefetchVar(
          tables[i].second, actual_ctx, *local_scope.get(), in_var_names[i],
          out_var_names[i], tables[i].first));
    } else {
      VLOG(3) << "don't send no-initialied variable: " << out_var_names[i];
    }
  }
  for (size_t i = 0; i < rets.size(); i++) {
148 149
    PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, platform::errors::ExecutionTimeout(
                                               "internal error in RPCClient"));
Q
Qiao Longfei 已提交
150
  }
Q
Qiao Longfei 已提交
151

152 153
  for (size_t o_idx = 0; o_idx < out_var_names.size(); ++o_idx) {
    auto &ids_in_this_section = origin_ids[o_idx];
154

Q
Qiao Longfei 已提交
155
    if (!ids_in_this_section.empty()) {
156 157 158 159
      auto &prefetch_out_var =
          local_scope->Var(out_var_names[o_idx])->Get<framework::LoDTensor>();
      const auto *out_var_data = prefetch_out_var.data<float>();
      auto &dims = prefetch_out_var.dims();
Q
Qiao Longfei 已提交
160 161 162 163 164 165

      PADDLE_ENFORCE_EQ(dims.size(), 2, "");
      PADDLE_ENFORCE_EQ(ids_in_this_section.size(), dims[0]);

      auto row_numel = dims[1];

166
      for (int64_t i = 0; i < dims[0]; ++i) {
167
        auto origin_id = ids_in_this_section[i];
168
        std::vector<float> vecs(row_numel);
C
Chengmo 已提交
169

170 171
        std::copy_n(out_var_data + i * row_numel, row_numel, vecs.begin());
        (*recved_vec_map)[origin_id] = vecs;
Q
Qiao Longfei 已提交
172
      }
Q
Qiao Longfei 已提交
173
    } else {
174
      VLOG(3) << "ids in this section is empty";
Q
Qiao Longfei 已提交
175 176 177 178
    }
  }
}

179 180 181 182 183 184 185 186 187
void prefetch(const std::string &id_name, const std::string &out_name,
              const std::string &persistable_var_name,
              const bool is_distributed,
              const std::vector<std::string> &table_names,
              const std::vector<std::string> &endpoints,
              const framework::ExecutionContext &context,
              const framework::Scope &scope) {
  prefetchs({id_name}, {out_name}, persistable_var_name, is_distributed,
            table_names, endpoints, context, scope);
188
}
Q
Qiao Longfei 已提交
189

190 191 192 193 194 195 196 197
void prefetchs(const std::vector<std::string> &id_var_names,
               const std::vector<std::string> &out_var_names,
               const std::string &persistable_var_name,
               const bool is_distributed,
               const std::vector<std::string> &table_names,
               const std::vector<std::string> &endpoints,
               const framework::ExecutionContext &context,
               const framework::Scope &scope) {
T
tangwei12 已提交
198
  auto vec_dim_1 = 0;
199 200 201 202 203 204 205 206 207
  auto vec_dim_0 = 0;
  framework::Variable *var = scope.FindVar(persistable_var_name);

  if (var->IsType<SelectedRows>()) {
    vec_dim_1 = var->Get<framework::SelectedRows>().value().dims()[1];
  } else {
    vec_dim_0 = var->Get<framework::LoDTensor>().dims()[0];
    vec_dim_1 = var->Get<framework::LoDTensor>().dims()[1];
  }
T
tangwei12 已提交
208 209 210 211

  PADDLE_ENFORCE_GT(vec_dim_1, 0,
                    platform::errors::InvalidArgument(
                        "lookup table var's dim must gather than 0"));
212 213 214 215

  const auto place =
      scope.FindVar(id_var_names[0])->Get<framework::LoDTensor>().place();

C
Chengmo 已提交
216
  std::vector<std::vector<int64_t>> ids_group;
217
  std::vector<int64_t> ids_union;
C
Chengmo 已提交
218
  std::vector<framework::LoD> ids_lods;
219 220
  TableAndEndpoints tables;

221
  for (auto &id_name : id_var_names) {
C
Chengmo 已提交
222 223 224 225 226 227
    auto &id_tensor = scope.FindVar(id_name)->Get<framework::LoDTensor>();
    std::vector<int64_t> ids;
    TensorToVector(id_tensor, context.device_context(), &ids);
    ids_union.insert(ids_union.end(), ids.begin(), ids.end());
    ids_group.push_back(ids);
    ids_lods.push_back(id_tensor.lod());
Q
Qiao Longfei 已提交
228 229
  }

230 231
  std::unordered_set<int64_t> s(ids_union.begin(), ids_union.end());
  ids_union.assign(s.begin(), s.end());
Q
Qiao Longfei 已提交
232

233 234 235 236 237 238 239 240 241 242 243 244 245
  for (auto &i : ids_union) {
    PADDLE_ENFORCE_GE(
        i, 0, platform::errors::OutOfRange(
                  "each element in embedding should be larger or equal 0"));
    if (!is_distributed) {
      PADDLE_ENFORCE_LT(
          i, vec_dim_0,
          platform::errors::OutOfRange(
              "embedding id must in [0, %d) when is_distributed False",
              vec_dim_0));
    }
  }

246
  for (size_t i = 0; i < table_names.size(); i++) {
247
    tables.push_back(std::make_pair(table_names[i], endpoints[i]));
Q
Qiao Longfei 已提交
248 249
  }

250
  std::unordered_map<int64_t, std::vector<float>> recved_vec_map;
251
  prefetch_core(ids_union, tables, context, scope, is_distributed,
252 253 254 255 256 257
                &recved_vec_map);

  auto padding_idx = distributed::kNoPadding;

  if (context.HasAttr("padding_idx")) {
    padding_idx = context.Attr<int64_t>("padding_idx");
Q
Qiao Longfei 已提交
258
  }
Q
Qiao Longfei 已提交
259

260
  for (size_t i = 0; i < out_var_names.size(); i++) {
C
Chengmo 已提交
261 262
    std::vector<int64_t> ids = ids_group[i];
    auto ids_size = ids.size();
263 264
    auto *out_t =
        scope.FindVar(out_var_names[i])->GetMutable<framework::LoDTensor>();
C
Chengmo 已提交
265 266 267
    out_t->set_lod(ids_lods[i]);
    out_t->Resize(
        framework::make_ddim({static_cast<int64_t>(ids_size), vec_dim_1}));
268
    auto *out_d = out_t->mutable_data<float>(place);
269

C
Chengmo 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    if (platform::is_cpu_place(out_t->place())) {
      for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
        const auto &id = ids[idx];
        if (padding_idx != distributed::kNoPadding && id == padding_idx) {
          memset(out_d + idx * vec_dim_1, 0, sizeof(float) * vec_dim_1);
        } else {
          std::copy_n(recved_vec_map[id].begin(), vec_dim_1,
                      out_d + idx * vec_dim_1);
        }
      }
    } else {
#ifdef PADDLE_WITH_CUDA
      for (auto idx = 0; idx < static_cast<int>(ids_size); idx++) {
        const auto &id = ids[idx];
        auto stream = context.cuda_device_context().stream();
        if (padding_idx != distributed::kNoPadding && id == padding_idx) {
          platform::GpuMemsetAsync(out_d + idx * vec_dim_1, 0,
                                   sizeof(float) * vec_dim_1, stream);
        } else {
          auto &cpu_place =
              BOOST_GET_CONST(platform::CPUPlace,
                              paddle::platform::CPUDeviceContext().GetPlace());
          auto &gpu_place =
              BOOST_GET_CONST(platform::CUDAPlace, out_t->place());
          memory::Copy(gpu_place, out_d + idx * vec_dim_1, cpu_place,
                       &recved_vec_map[id][0], sizeof(float) * vec_dim_1,
                       stream);
        }
298
      }
C
Chengmo 已提交
299 300 301 302
#else
      PADDLE_ENFORCE(true, platform::errors::PermissionDenied(
                               "Paddle is not compiled with GPU!"));
#endif
303
    }
Q
Qiao Longfei 已提交
304 305 306 307 308 309
  }
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle