layer.cc 13.5 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16
#include <algorithm>
J
Jiabin Yang 已提交
17
#include <queue>
18
#include <utility>
19
#include "paddle/fluid/framework/framework.pb.h"
20
#include "paddle/fluid/framework/op_registry.h"
J
Jiabin Yang 已提交
21
#include "paddle/fluid/framework/variable_helper.h"
22 23 24 25
#include "paddle/fluid/imperative/execution_context.h"
#include "paddle/fluid/imperative/infer_shape_context.h"
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
26 27
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
28
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
29
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
30
#include "paddle/fluid/platform/profiler.h"
31 32 33 34 35
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
36 37 38 39

namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
40
using framework::Variable;
Z
Zeng Jinle 已提交
41 42 43 44 45 46 47 48
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
49 50 51
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
52 53 54 55 56 57 58 59 60 61 62 63
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
64 65 66 67 68 69 70 71 72
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
73 74
  }

J
Jiabin Yang 已提交
75 76 77 78 79
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
80
    }
J
Jiabin Yang 已提交
81 82 83 84
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

85
template <typename VarType>
J
Jiabin Yang 已提交
86 87
static std::string DebugString(
    const std::string& name,
88
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
89 90
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
91

J
Jiabin Yang 已提交
92 93
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
94

J
Jiabin Yang 已提交
95 96 97 98 99
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
    ss << vars[i]->Name() << "[";
100
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    } else if (var.IsType<framework::SelectedRows>()) {
      ss << "SelectedRows<";
      auto& selected_rows = var.Get<framework::SelectedRows>();
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
130 131 132 133
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
134
  }
135

J
Jiabin Yang 已提交
136 137
  ss << "}";
  return ss.str();
138 139
}

140 141 142 143
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
144 145 146 147 148 149 150 151
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
152
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
153
    ++i;
154 155
  }

J
Jiabin Yang 已提交
156 157 158 159
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
160
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
161 162 163 164
    ++i;
  }
  return ss.str();
}
165

166 167 168 169 170 171 172 173 174 175
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
176
}
177

178
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
179
    : var_(var), grad_node_(var->GetGradNode()) {
180 181
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
182 183 184 185 186 187 188 189 190 191 192 193
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

J
Jiabin Yang 已提交
194 195
void VarBase::ClearGradient() {
  if (grad_var_) {
196 197 198
    if (grad_var_->Var().IsType<framework::SelectedRows>()) {
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::SelectedRows>();
199
      if (grad_t->mutable_value()->IsInitialized()) {
200 201 202
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
203 204 205 206
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
207 208
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
209 210 211 212
      if (grad_t->IsInitialized()) {
        auto* dev_ctx =
            platform::DeviceContextPool::Instance().Get(grad_t->place());
        operators::math::set_constant(*dev_ctx, grad_t, 0.0);
213 214 215
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
216
      }
217 218
    }
  }
J
Jiabin Yang 已提交
219
}
220

J
Jiabin Yang 已提交
221
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
222
                                             const bool blocking) const {
223
  PADDLE_ENFORCE_EQ(
224 225
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
                                Var().IsType<framework::SelectedRows>()),
226 227 228
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
229 230
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
231 232 233

    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
234
        true, Name() + std::to_string(copied_counter_++));
235

236 237
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
238
    dst_tensor->set_lod(src_tensor.lod());
239 240 241
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
242 243 244 245 246 247 248
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
249
    }
P
Paddle CI 已提交
250

251 252 253 254 255
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy tensor " << Name() << " from gpu";
    }
    return new_var;
  } else {
256
    auto& src_selected_rows = Var().Get<framework::SelectedRows>();
257 258 259 260
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
261
        new_var->MutableVar()->GetMutable<framework::SelectedRows>();
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy selected rows " << Name() << " from gpu";
    }
    return new_var;
  }
M
minqiyang 已提交
279 280
}

281 282 283 284 285 286 287 288 289
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

290
void OpBase::SetType(const std::string& type) {
H
hong 已提交
291
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
292
}
293

294 295 296
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
297 298
}

299 300 301 302 303 304 305
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
                          const platform::Place& place) {
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
306 307 308
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
309
  auto& info = op.Info();
J
Jiabin Yang 已提交
310
  if (info.infer_var_type_) {
311
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs);
J
Jiabin Yang 已提交
312
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
313
  }
314

J
Jiabin Yang 已提交
315 316 317
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
318 319 320
      if (var) {
        InitializeVariable(var->MutableVar(), var->Type());
      }
321 322
    }
  }
X
Xin Pan 已提交
323

324 325
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
  auto prepared_op = PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs);
326

327
  prepared_op.Run(ins, outs, attrs);
328

329
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
330 331
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, place);
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, place);
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static void ClearNoNeedBufferInputs(OpBase* op) {
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
    const platform::Place& place) {
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs);
  if (grad_node && !grad_node->empty()) {
395 396 397 398
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
399 400 401 402 403 404 405
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

406 407
}  // namespace imperative
}  // namespace paddle