inference_transpiler.py 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import numpy as np
19 20 21
from .. import core
from ..framework import Program
from ..executor import global_scope
22 23


24
class InferenceTranspiler(object):
L
Luo Tao 已提交
25
    '''
26 27 28 29 30 31
    Convert the fluid program to optimized inference program.

    There are several optimizations:

      - fuse convolution and batch normalization
      - fuse batch normalization and relu (MKLDNN only)
L
Luo Tao 已提交
32 33

    Examples:
34

L
Luo Tao 已提交
35 36 37 38 39 40 41 42 43
    .. code-block:: python

        # As InferenceTranspiler will modify the original program,
        # please clone before use it.
        inference_transpiler_program = program.clone()
        t = fluid.InferenceTranspiler()
        t.transpile(inference_transpiler_program, place)
    '''

L
Luo Tao 已提交
44
    def transpile(self, program, place, scope=None):
45
        '''
L
Luo Tao 已提交
46 47 48 49 50 51
        Run the transpiler.

        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope|None): inference Scope
L
Luo Tao 已提交
52
        '''
L
Luo Tao 已提交
53 54 55 56 57 58 59 60 61
        if not isinstance(program, Program):
            raise TypeError("program should be as Program type")
        if not isinstance(place, core.CPUPlace) and not isinstance(
                place, core.CUDAPlace):
            raise TypeError("place should be as CPUPlace/CUDAPlace type")
        if scope is None:
            scope = global_scope()
        if not isinstance(scope, core.Scope):
            raise TypeError("scope should be as Scope type or None")
62
        use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False))
M
Michal Gallus 已提交
63

64 65 66
        if use_mkldnn:
            self._depthwise_conv_mkldnn(program)

67
        self._fuse_batch_norm(program, place, scope)
68 69
        if use_mkldnn:
            self._fuse_conv_bias_mkldnn(program)
M
Michal Gallus 已提交
70
            self._fuse_conv_relu_mkldnn(program)
71 72 73
            self._fuse_conv_eltwise_mkldnn(program)
            self._fuse_conv_relu_mkldnn(
                program)  # ResNet residual block merging
M
Michal Gallus 已提交
74 75
            self._fuse_bn_relu_mkldnn(program)

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    def _depthwise_conv_mkldnn(self, program):
        '''
        Transpile the program by replacing depthwise_conv2d to conv2d for MKLDNN program.
        The result is:
            - before:
                - any_other_op->depthwise_conv->any_other_op
            - after:
                - any_other_op->conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type == 'depthwise_conv2d':
                current_op.desc.set_type("conv2d")
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

101 102 103 104
    def _fuse_conv_eltwise_mkldnn(self, program):
        '''
        Transpile the program fusing elementwise_add into conv for MKLDNN
        program. Elementwise add following convolution OP can be fused by adding
105
        'fuse_residual_connection' attribute to convolution OP and replacing its output
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        Tensor with second parameter of elementwise_add.
        The result of fuse is:
            - before:
                - conv->elementwise_add->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'elementwise_add':
123 124
                    self._fuse_conv_eltwise(i, current_op, next_op)
                    self.block._remove_op(i + 1)  # Remove old conv
125 126 127 128 129 130 131 132 133
                    self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1
        self._adjust_input()
        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

M
Michal Gallus 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    def _fuse_conv_relu_mkldnn(self, program):
        '''
        Transpile the program by fused relu activation for MKLDNN program.
        Relu activation following convolution OP can be fused by adding
        'fuse_relu' attribute to convolution OP.
        The result of fuse is:
            - before:
                - conv->relu->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
155
                    # modify bnorm OP to include relu
K
Krzysztof Binias 已提交
156
                    current_op._set_attr("fuse_relu", True)
157
                    # remove relu OP
M
Michal Gallus 已提交
158 159 160 161 162 163 164
                    self.block._remove_op(i + 1)
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
165

M
Michal Gallus 已提交
166
    def _fuse_bn_relu_mkldnn(self, program):
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        '''
        Transpile the program by fused relu activation for MKLDNN program.

        Relu activation following batch norm OP can be fused by adding
        :math:`fuse_with_relu` attribute to batch norm OP.

        The result of fuse is:

        - before:

          - batch_norm->relu->any_other_op

        - after:

          - batch_norm->any_other_op

        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 1:
            current_op = self.block.ops[i]
            if current_op.type in ['batch_norm']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
                    # modify bnorm OP to include relu
W
Wu Yi 已提交
195
                    current_op._set_attr("fuse_with_relu", True)
196
                    # remove relu OP
W
Wu Yi 已提交
197
                    self.block._remove_op(i + 1)
198 199 200 201 202 203 204
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
L
Luo Tao 已提交
205

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    def _fuse_conv_bias_mkldnn(self, program):
        '''
        Transpile the program by fused convolution and elementwise_add.

        Replace conv2d and elementwise_add ops with a new conv2d op
        based on an old conv2d op and the :math:`Bias` taken from
        elementwise_add.

        For input :math:`X`:

        - Conv process:            :math:`X = input * W`
        - Elementwise_add process: :math` X = X + bias`

        After fuse into one operation:

        .. math::

            X = input * W + bias

        The operator transformation is:

        - before:

          - conv->elementwise_add->any_other_op

        - after:

          - conv->any_other_op

        The transpile stages are:

        1. Extract bias and output variables from elementwise_add.
        2. Extract Input, Weight and attributes from conv op.
        3. Create a new convolution op based on extracted params.
        4. Remove old conv op.
        5. Remove elementwise_add.
        5. Remove unused variables.

        Args:
            program (Program): program to transpile

        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 2:
            current_op = self.block.ops[i]
            next_op = self.block.ops[i + 1]
            # conv2d with bias
            if current_op.type in ['conv2d'] and \
               next_op.type in ['elementwise_add']:
                self._fuse_conv_bias(i, current_op, next_op)
                self.block._remove_op(i + 1)  # Remove old conv
                self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

W
Wu Yi 已提交
268
    def _fuse_batch_norm(self, program, place, scope):
L
Luo Tao 已提交
269 270
        '''
        Transpile the program by fused batch normalization.
271 272 273

        The batch normalization followed the convolution or fully connected layer
        can be integrated with them. Doing so will give us a forward acceleration,
274
        especially in environments like mobile or embedded.
275

L
Luo Tao 已提交
276 277
        For input :math:`X`:

278 279
        - Conv process:        :math:`X = input * W + bias`
        - Batch norm process:  :math:`X' = (X - mean) / std`
L
Luo Tao 已提交
280
        - Scale Process:       :math:`Y = a * X' + b`
281 282 283

        After fuse into one operation:

L
Luo Tao 已提交
284 285 286 287
        .. math::

            Y &= (input * W + bias - mean) / std * a + b \\\\
              &= input * a * W / std + ((bias - mean) / std * a + b)
288

289
        The operator transformation is:
L
Luo Tao 已提交
290

291
        - before:
L
Luo Tao 已提交
292

293 294
          - conv->batch_norm->any_other_op (bias == 0)
          - conv->elementwise_add->batch_norm->any_other_op (bias != 0)
295 296

        - after:
L
Luo Tao 已提交
297

298
          - conv->elementwise_add->any_other_op
299

300
        The transpile stages are:
L
Luo Tao 已提交
301

302
        1. insert elementwise_add op when bias == 0.
303
        2. fuse the batch_norm's parameters to conv and elementwise_add operators.
304 305 306
        3. remove batch_norm ops which are not used in any other ops.
        4. adjust the input of any_other_op to be the output of elementwise_add operator.
        5. remove unused variables.
307

L
Luo Tao 已提交
308 309 310 311
        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope): inference Scope
312

313 314 315
        '''
        self.scope = scope
        self.place = place
316
        self.block = program.block(0)
317
        self.input_map = {}  # store the input names should be adjusted
318

319
        i = 0
320
        while i < len(self.block.ops) - 2:
321
            current_op = self.block.ops[i]
322
            # TODO(luotao1): consider only conv2d now. fc would be delt later.
323
            if current_op.type in ['conv2d']:
324 325
                # TODO(luotao1): consider single chain network now.
                # For branch network, we counldn't use block.ops[i + 1] as
L
Luo Tao 已提交
326
                # the judgment condition.
327
                next_op = self.block.ops[i + 1]
328
                # conv2d without bias
329
                if (next_op.type == 'batch_norm'):
330 331 332
                    # insert bias op
                    bias_op = self._insert_bias_op(i + 1, current_op, next_op)
                    # fuse batch_norm
333
                    self._fuse_param(current_op, next_op, bias_op, 0)
334
                    # remove batch_norm_op
W
Wu Yi 已提交
335
                    self.block._remove_op(i + 2)
336
                    i = i + 1
337 338 339 340 341 342 343
                # conv2d with bias, the next_op.type is elementwise_add
                elif (next_op.type == 'elementwise_add'):
                    next_next_op = self.block.ops[i + 2]
                    if (next_next_op.type == 'batch_norm'):
                        # fuse batch_norm
                        self._fuse_param(current_op, next_next_op, next_op, 1)
                        # remove batch_norm_op
W
Wu Yi 已提交
344
                        self.block._remove_op(i + 2)
345
                        i = i + 1
346
            i = i + 1
347
        self._adjust_input()
348
        self._remove_unused_var()
349 350
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
L
Luo Tao 已提交
351
        # And a better solution will be considered later.
L
Luo Tao 已提交
352
        program = program.clone()
353 354 355 356

    # ====================== private transpiler functions =====================
    def _insert_bias_op(self, index, current_op, bn_op):
        '''
357
        Construct elementwise_add operator for adding bias
358
        and insert it into program.
359

360 361 362 363 364 365 366 367 368 369 370
        :param index: insert location of bias_op
        :type index: Int
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :return: bias_op
        :rtype: Operator
        '''
        # The input of bias_op is current_op's output and Bias of bn_op
        # The output of bias_op is bn_op's output
371 372 373 374
        x_var = self.block.var(current_op.output("Output")[0])
        y_var = self.block.var(bn_op.input("Bias")[0])
        out_var = self.block.var(bn_op.output("Y")[0])

W
Wu Yi 已提交
375
        bias_op = self.block._insert_op(
376 377 378 379 380 381
            index,
            type="elementwise_add",
            inputs={"X": x_var,
                    "Y": y_var},
            outputs={"Out": out_var},
            attrs={"axis": 1})  # dim_start=1
382 383
        return bias_op

384
    def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
385 386
        '''
        fuse the batch_norm_op' parameters to current_op (conv or fc)
387

388 389 390 391 392 393
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :param bias_op: elementwise_add operator for adding bias
        :type bias_op: Operator
394
        :param with_bias: If current operator has bias, with_bias = 1; otherwise 0.
395
        :type with_bias: Int
396 397
        '''

L
Luo Tao 已提交
398 399 400 401 402 403 404 405 406 407 408
        def _update_param(op, old_param_name, new_param):
            # For the sake of remaining the original variables the same as before,
            # create new variables in scope to store the new parameters.
            old_param_name = old_param_name[0]
            old_var = self.block.vars[old_param_name]
            new_param_name = old_param_name + '_fuse_bn'
            new_var = self.block.create_parameter(
                name=new_param_name.encode('ascii'),
                type=old_var.type,
                dtype=old_var.dtype,
                shape=old_var.shape)
W
Wu Yi 已提交
409
            op._rename_input(old_param_name, new_param_name)
L
Luo Tao 已提交
410 411 412 413
            self.scope.var(new_param_name)

            tensor = self.scope.find_var(new_param_name).get_tensor()
            tensor.set(np.array(new_param), self.place)
414 415

        def _load_param(param_name):
L
Luo Tao 已提交
416
            return np.array(self.scope.find_var(param_name[0]).get_tensor())
417 418 419 420 421 422 423 424 425 426 427 428

        bias_bn = _load_param(bn_op.input("Bias"))  #Bias
        scale_bn = _load_param(bn_op.input("Scale"))  #Scale
        mean_bn = _load_param(bn_op.input("Mean"))  #Mean
        var_bn = _load_param(bn_op.input("Variance"))  #Variance

        # TODO(luotao1): consider only conv2d now. fc would be delt later.
        current_param = _load_param(current_op.input("Filter"))
        std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
        tmp = np.float32(np.divide(scale_bn, std_bn))

        # add bias of batch_norm_op to conv2d
429 430 431 432
        if with_bias:
            bias = _load_param(bias_op.input("Y"))
        else:
            bias = np.zeros(bias_bn.shape)
433 434 435 436 437 438 439 440 441
        bias = np.float32(
            np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))

        # re-compute weight of conv2d
        tmp = tmp.reshape(tmp.shape[0], -1)
        dst_param = current_param.reshape((tmp.shape[0], -1))
        dst_param = np.float32(np.multiply(dst_param, tmp))
        dst_param = dst_param.reshape(current_param.shape)

L
Luo Tao 已提交
442 443 444
        # update parameters
        _update_param(current_op, current_op.input("Filter"), dst_param)
        _update_param(bias_op, bias_op.input("Y"), bias)
445

446 447 448
        # collect the renamed input
        self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    def _fuse_conv_bias(self, index, conv_op, elementwise_add_op):
        '''
        fuse the conv op with elementwise_add

        :param index: index of the conv_op in ops list
        :type index: Int
        :param conv_op: convolution operator
        :type conv_op: Operator
        :param elementwise_add_op: convolution's bias operator
        :type elementwise_add_op: Operator
        '''

        bias_var = self.block.var(elementwise_add_op.input("Y")[0])
        out_var = self.block.var(elementwise_add_op.output("Out")[0])
        filter_var = self.block.var(conv_op.input("Filter")[0])
        in_var = self.block.var(conv_op.input("Input")[0])
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={"Input": in_var,
                    "Filter": filter_var,
                    "Bias": bias_var},
            outputs={"Output": out_var},
            attrs=attrs)

476
    def _fuse_conv_eltwise(self, index, conv_op, eltwise_op):
477 478 479 480 481 482 483 484 485
        '''
        fuse the conv op with elementwise_add

        :param conv_op: convolution operator
        :type conv_op: Operator
        :param eltwise_op: operator adding data from skip connection
        :type eltwise_op: Operator
        '''

486 487 488 489 490 491 492 493 494
        eltwise_input = "X"
        if eltwise_op.input("X")[0] == conv_op.output("Output")[0]:
            eltwise_input = "Y"

        residual_var = self.block.vars[eltwise_op.input(eltwise_input)[0]]
        out_var = self.block.vars[eltwise_op.output("Out")[0]]
        filter_var = self.block.vars[conv_op.input("Filter")[0]]
        in_var = self.block.vars[conv_op.input("Input")[0]]
        bias_var = self.block.vars[conv_op.input("Bias")[0]]
495

496
        conv_op._set_attr("fuse_residual_connection", True)
497 498 499 500 501 502 503 504 505 506 507 508 509
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={
                "Input": in_var,
                "Filter": filter_var,
                "Bias": bias_var,
                "ResidualData": residual_var
            },
            outputs={"Output": out_var},
            attrs=attrs)
510

511
    def _adjust_input(self):
512 513 514 515
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            for input_arg in current_op.input_arg_names:
                if input_arg in self.input_map:
W
Wu Yi 已提交
516 517
                    current_op._rename_input(input_arg,
                                             self.input_map[input_arg])
518

519 520
    def _remove_unused_var(self):
        '''
521
        remove unused varibles in program
522 523
        '''
        args = []
524 525 526 527
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            args += current_op.input_arg_names
            args += current_op.output_arg_names
528 529
        args = list(set(args))  # unique the input and output arguments

530
        for var in list(self.block.vars.keys()):
531
            if var not in args:
W
Wu Yi 已提交
532
                self.block._remove_var(var)