inference_transpiler.py 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import numpy as np
19 20 21
from .. import core
from ..framework import Program
from ..executor import global_scope
22 23


24
class InferenceTranspiler(object):
L
Luo Tao 已提交
25
    '''
26 27 28 29 30 31
    Convert the fluid program to optimized inference program.

    There are several optimizations:

      - fuse convolution and batch normalization
      - fuse batch normalization and relu (MKLDNN only)
L
Luo Tao 已提交
32 33

    Examples:
34

L
Luo Tao 已提交
35 36 37 38 39 40 41 42 43
    .. code-block:: python

        # As InferenceTranspiler will modify the original program,
        # please clone before use it.
        inference_transpiler_program = program.clone()
        t = fluid.InferenceTranspiler()
        t.transpile(inference_transpiler_program, place)
    '''

L
Luo Tao 已提交
44
    def transpile(self, program, place, scope=None):
45
        '''
L
Luo Tao 已提交
46 47 48 49 50 51
        Run the transpiler.

        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope|None): inference Scope
L
Luo Tao 已提交
52
        '''
L
Luo Tao 已提交
53 54 55 56 57 58 59 60 61
        if not isinstance(program, Program):
            raise TypeError("program should be as Program type")
        if not isinstance(place, core.CPUPlace) and not isinstance(
                place, core.CUDAPlace):
            raise TypeError("place should be as CPUPlace/CUDAPlace type")
        if scope is None:
            scope = global_scope()
        if not isinstance(scope, core.Scope):
            raise TypeError("scope should be as Scope type or None")
62
        use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False))
M
Michal Gallus 已提交
63

64
        self._fuse_batch_norm(program, place, scope)
65 66
        if use_mkldnn:
            self._fuse_conv_bias_mkldnn(program)
M
Michal Gallus 已提交
67
            self._fuse_conv_relu_mkldnn(program)
68 69 70
            self._fuse_conv_eltwise_mkldnn(program)
            self._fuse_conv_relu_mkldnn(
                program)  # ResNet residual block merging
M
Michal Gallus 已提交
71 72
            self._fuse_bn_relu_mkldnn(program)

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    def _fuse_conv_eltwise_mkldnn(self, program):
        '''
        Transpile the program fusing elementwise_add into conv for MKLDNN
        program. Elementwise add following convolution OP can be fused by adding
        'fuse_eltwise' attribute to convolution OP and replacing its output
        Tensor with second parameter of elementwise_add.
        The result of fuse is:
            - before:
                - conv->elementwise_add->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'elementwise_add':
                    self._fuse_conv_eltwise(current_op, next_op)
                    self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1
        self._adjust_input()
        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

M
Michal Gallus 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    def _fuse_conv_relu_mkldnn(self, program):
        '''
        Transpile the program by fused relu activation for MKLDNN program.
        Relu activation following convolution OP can be fused by adding
        'fuse_relu' attribute to convolution OP.
        The result of fuse is:
            - before:
                - conv->relu->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
126
                    # modify bnorm OP to include relu
K
Krzysztof Binias 已提交
127
                    current_op._set_attr("fuse_relu", True)
128
                    # remove relu OP
M
Michal Gallus 已提交
129 130 131 132 133 134 135
                    self.block._remove_op(i + 1)
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
136

M
Michal Gallus 已提交
137
    def _fuse_bn_relu_mkldnn(self, program):
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        '''
        Transpile the program by fused relu activation for MKLDNN program.

        Relu activation following batch norm OP can be fused by adding
        :math:`fuse_with_relu` attribute to batch norm OP.

        The result of fuse is:

        - before:

          - batch_norm->relu->any_other_op

        - after:

          - batch_norm->any_other_op

        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 1:
            current_op = self.block.ops[i]
            if current_op.type in ['batch_norm']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
                    # modify bnorm OP to include relu
W
Wu Yi 已提交
166
                    current_op._set_attr("fuse_with_relu", True)
167
                    # remove relu OP
W
Wu Yi 已提交
168
                    self.block._remove_op(i + 1)
169 170 171 172 173 174 175
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
L
Luo Tao 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _fuse_conv_bias_mkldnn(self, program):
        '''
        Transpile the program by fused convolution and elementwise_add.

        Replace conv2d and elementwise_add ops with a new conv2d op
        based on an old conv2d op and the :math:`Bias` taken from
        elementwise_add.

        For input :math:`X`:

        - Conv process:            :math:`X = input * W`
        - Elementwise_add process: :math` X = X + bias`

        After fuse into one operation:

        .. math::

            X = input * W + bias

        The operator transformation is:

        - before:

          - conv->elementwise_add->any_other_op

        - after:

          - conv->any_other_op

        The transpile stages are:

        1. Extract bias and output variables from elementwise_add.
        2. Extract Input, Weight and attributes from conv op.
        3. Create a new convolution op based on extracted params.
        4. Remove old conv op.
        5. Remove elementwise_add.
        5. Remove unused variables.

        Args:
            program (Program): program to transpile

        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 2:
            current_op = self.block.ops[i]
            next_op = self.block.ops[i + 1]
            # conv2d with bias
            if current_op.type in ['conv2d'] and \
               next_op.type in ['elementwise_add']:
                self._fuse_conv_bias(i, current_op, next_op)
                self.block._remove_op(i + 1)  # Remove old conv
                self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

W
Wu Yi 已提交
239
    def _fuse_batch_norm(self, program, place, scope):
L
Luo Tao 已提交
240 241
        '''
        Transpile the program by fused batch normalization.
242 243 244

        The batch normalization followed the convolution or fully connected layer
        can be integrated with them. Doing so will give us a forward acceleration,
245
        especially in environments like mobile or embedded.
246

L
Luo Tao 已提交
247 248
        For input :math:`X`:

249 250
        - Conv process:        :math:`X = input * W + bias`
        - Batch norm process:  :math:`X' = (X - mean) / std`
L
Luo Tao 已提交
251
        - Scale Process:       :math:`Y = a * X' + b`
252 253 254

        After fuse into one operation:

L
Luo Tao 已提交
255 256 257 258
        .. math::

            Y &= (input * W + bias - mean) / std * a + b \\\\
              &= input * a * W / std + ((bias - mean) / std * a + b)
259

260
        The operator transformation is:
L
Luo Tao 已提交
261

262
        - before:
L
Luo Tao 已提交
263

264 265
          - conv->batch_norm->any_other_op (bias == 0)
          - conv->elementwise_add->batch_norm->any_other_op (bias != 0)
266 267

        - after:
L
Luo Tao 已提交
268

269
          - conv->elementwise_add->any_other_op
270

271
        The transpile stages are:
L
Luo Tao 已提交
272

273
        1. insert elementwise_add op when bias == 0.
274
        2. fuse the batch_norm's parameters to conv and elementwise_add operators.
275 276 277
        3. remove batch_norm ops which are not used in any other ops.
        4. adjust the input of any_other_op to be the output of elementwise_add operator.
        5. remove unused variables.
278

L
Luo Tao 已提交
279 280 281 282
        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope): inference Scope
283

284 285 286
        '''
        self.scope = scope
        self.place = place
287
        self.block = program.block(0)
288
        self.input_map = {}  # store the input names should be adjusted
289

290
        i = 0
291
        while i < len(self.block.ops) - 2:
292
            current_op = self.block.ops[i]
293
            # TODO(luotao1): consider only conv2d now. fc would be delt later.
294
            if current_op.type in ['conv2d']:
295 296
                # TODO(luotao1): consider single chain network now.
                # For branch network, we counldn't use block.ops[i + 1] as
L
Luo Tao 已提交
297
                # the judgment condition.
298
                next_op = self.block.ops[i + 1]
299
                # conv2d without bias
300
                if (next_op.type == 'batch_norm'):
301 302 303
                    # insert bias op
                    bias_op = self._insert_bias_op(i + 1, current_op, next_op)
                    # fuse batch_norm
304
                    self._fuse_param(current_op, next_op, bias_op, 0)
305
                    # remove batch_norm_op
W
Wu Yi 已提交
306
                    self.block._remove_op(i + 2)
307
                    i = i + 1
308 309 310 311 312 313 314
                # conv2d with bias, the next_op.type is elementwise_add
                elif (next_op.type == 'elementwise_add'):
                    next_next_op = self.block.ops[i + 2]
                    if (next_next_op.type == 'batch_norm'):
                        # fuse batch_norm
                        self._fuse_param(current_op, next_next_op, next_op, 1)
                        # remove batch_norm_op
W
Wu Yi 已提交
315
                        self.block._remove_op(i + 2)
316
                        i = i + 1
317
            i = i + 1
318
        self._adjust_input()
319
        self._remove_unused_var()
320 321
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
L
Luo Tao 已提交
322
        # And a better solution will be considered later.
L
Luo Tao 已提交
323
        program = program.clone()
324 325 326 327

    # ====================== private transpiler functions =====================
    def _insert_bias_op(self, index, current_op, bn_op):
        '''
328
        Construct elementwise_add operator for adding bias
329
        and insert it into program.
330

331 332 333 334 335 336 337 338 339 340 341
        :param index: insert location of bias_op
        :type index: Int
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :return: bias_op
        :rtype: Operator
        '''
        # The input of bias_op is current_op's output and Bias of bn_op
        # The output of bias_op is bn_op's output
342 343 344 345
        x_var = self.block.var(current_op.output("Output")[0])
        y_var = self.block.var(bn_op.input("Bias")[0])
        out_var = self.block.var(bn_op.output("Y")[0])

W
Wu Yi 已提交
346
        bias_op = self.block._insert_op(
347 348 349 350 351 352
            index,
            type="elementwise_add",
            inputs={"X": x_var,
                    "Y": y_var},
            outputs={"Out": out_var},
            attrs={"axis": 1})  # dim_start=1
353 354
        return bias_op

355
    def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
356 357
        '''
        fuse the batch_norm_op' parameters to current_op (conv or fc)
358

359 360 361 362 363 364
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :param bias_op: elementwise_add operator for adding bias
        :type bias_op: Operator
365
        :param with_bias: If current operator has bias, with_bias = 1; otherwise 0.
366
        :type with_bias: Int
367 368
        '''

L
Luo Tao 已提交
369 370 371 372 373 374 375 376 377 378 379
        def _update_param(op, old_param_name, new_param):
            # For the sake of remaining the original variables the same as before,
            # create new variables in scope to store the new parameters.
            old_param_name = old_param_name[0]
            old_var = self.block.vars[old_param_name]
            new_param_name = old_param_name + '_fuse_bn'
            new_var = self.block.create_parameter(
                name=new_param_name.encode('ascii'),
                type=old_var.type,
                dtype=old_var.dtype,
                shape=old_var.shape)
W
Wu Yi 已提交
380
            op._rename_input(old_param_name, new_param_name)
L
Luo Tao 已提交
381 382 383 384
            self.scope.var(new_param_name)

            tensor = self.scope.find_var(new_param_name).get_tensor()
            tensor.set(np.array(new_param), self.place)
385 386

        def _load_param(param_name):
L
Luo Tao 已提交
387
            return np.array(self.scope.find_var(param_name[0]).get_tensor())
388 389 390 391 392 393 394 395 396 397 398 399

        bias_bn = _load_param(bn_op.input("Bias"))  #Bias
        scale_bn = _load_param(bn_op.input("Scale"))  #Scale
        mean_bn = _load_param(bn_op.input("Mean"))  #Mean
        var_bn = _load_param(bn_op.input("Variance"))  #Variance

        # TODO(luotao1): consider only conv2d now. fc would be delt later.
        current_param = _load_param(current_op.input("Filter"))
        std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
        tmp = np.float32(np.divide(scale_bn, std_bn))

        # add bias of batch_norm_op to conv2d
400 401 402 403
        if with_bias:
            bias = _load_param(bias_op.input("Y"))
        else:
            bias = np.zeros(bias_bn.shape)
404 405 406 407 408 409 410 411 412
        bias = np.float32(
            np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))

        # re-compute weight of conv2d
        tmp = tmp.reshape(tmp.shape[0], -1)
        dst_param = current_param.reshape((tmp.shape[0], -1))
        dst_param = np.float32(np.multiply(dst_param, tmp))
        dst_param = dst_param.reshape(current_param.shape)

L
Luo Tao 已提交
413 414 415
        # update parameters
        _update_param(current_op, current_op.input("Filter"), dst_param)
        _update_param(bias_op, bias_op.input("Y"), bias)
416

417 418 419
        # collect the renamed input
        self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    def _fuse_conv_bias(self, index, conv_op, elementwise_add_op):
        '''
        fuse the conv op with elementwise_add

        :param index: index of the conv_op in ops list
        :type index: Int
        :param conv_op: convolution operator
        :type conv_op: Operator
        :param elementwise_add_op: convolution's bias operator
        :type elementwise_add_op: Operator
        '''

        bias_var = self.block.var(elementwise_add_op.input("Y")[0])
        out_var = self.block.var(elementwise_add_op.output("Out")[0])
        filter_var = self.block.var(conv_op.input("Filter")[0])
        in_var = self.block.var(conv_op.input("Input")[0])
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={"Input": in_var,
                    "Filter": filter_var,
                    "Bias": bias_var},
            outputs={"Output": out_var},
            attrs=attrs)

447 448 449 450 451 452 453 454 455 456
    def _fuse_conv_eltwise(self, conv_op, eltwise_op):
        '''
        fuse the conv op with elementwise_add

        :param conv_op: convolution operator
        :type conv_op: Operator
        :param eltwise_op: operator adding data from skip connection
        :type eltwise_op: Operator
        '''

K
Krzysztof Binias 已提交
457
        conv_op._set_attr("fuse_eltwise", True)
458 459 460
        self.input_map[conv_op.output("Output")[0]] = eltwise_op.input("Y")[0]
        self.input_map[eltwise_op.output("Out")[0]] = eltwise_op.input("Y")[0]

461
    def _adjust_input(self):
462 463 464 465
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            for input_arg in current_op.input_arg_names:
                if input_arg in self.input_map:
W
Wu Yi 已提交
466 467
                    current_op._rename_input(input_arg,
                                             self.input_map[input_arg])
468

469 470
    def _remove_unused_var(self):
        '''
471
        remove unused varibles in program
472 473
        '''
        args = []
474 475 476 477
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            args += current_op.input_arg_names
            args += current_op.output_arg_names
478 479
        args = list(set(args))  # unique the input and output arguments

480
        for var in list(self.block.vars.keys()):
481
            if var not in args:
W
Wu Yi 已提交
482
                self.block._remove_var(var)