sequence_padding.cu 8.5 KB
Newer Older
Y
Yiqun Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/sequence_padding.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T, bool NormByTimes, bool Padding>
__global__ void SequencePaddingKernel(T* padding, T* sequence,
                                      const size_t* sequence_start_positions,
                                      const size_t sequence_width,
                                      const size_t max_sequence_length,
                                      const size_t num_sequences) {
  size_t padding_idx = blockIdx.y;
  size_t start_pos = sequence_start_positions[padding_idx];
  size_t sequence_length =
      sequence_start_positions[padding_idx + 1] - start_pos;

  size_t sequence_idx = blockIdx.x * blockDim.y + threadIdx.y;
  size_t padding_base_idx =
      (sequence_idx * num_sequences + padding_idx) * sequence_width;
  size_t sequence_base_idx = (start_pos + sequence_idx) * sequence_width;

  if (sequence_idx < sequence_length) {
    T scale = NormByTimes ? (1.0f / static_cast<T>(sequence_length)) : 1.0f;
    if (Padding) {
      /* sequence -> padding */
      for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) {
        padding[padding_base_idx + i] = scale * sequence[sequence_base_idx + i];
      }
    } else {
      /* padding -> sequence */
      for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) {
        sequence[sequence_base_idx + i] = scale * padding[padding_base_idx + i];
      }
    }
  } else if (sequence_idx < max_sequence_length) {
    if (Padding) {
      /* sequence -> padding */
      for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) {
        padding[padding_base_idx + i] = 0;
      }
    }
  }
}

template <typename T>
class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::LoDTensor& seq, framework::Tensor& padding,
                  bool norm_by_times) {
    auto lod = seq.lod();
    PADDLE_ENFORCE_GT(lod.size(), 0UL,
                      "The lod of LoDTensor seq should not be null.");

    const size_t level = 0;
    framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);

    auto seq_dims = seq.dims();
Y
Yancey1989 已提交
74 75
    PADDLE_ENFORCE_EQ(seq_dims[0],
                      static_cast<int64_t>(abs_offset_lod[level].back()),
Y
Yiqun Liu 已提交
76 77 78 79 80 81 82 83
                      "The first dimension of LoDTensor seq should be "
                      "equal to the sum of all sequences's length.");

    auto padding_dims = padding.dims();
    PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL,
                      "The input padding should be a 3-D Tensor of shape "
                      "[max_sequence_length, num_sequences, sequence_width].");

Y
Yancey1989 已提交
84
    int64_t max_sequence_length = MaximumSequenceLength(lod, level);
Y
Yiqun Liu 已提交
85 86 87 88
    PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length,
                      "The first dimension of Tensor padding should be the "
                      "maximum length of all sequences in LoDTensor seq.");

Y
Yancey1989 已提交
89
    const int64_t num_sequences = abs_offset_lod[level].size() - 1;
Y
Yiqun Liu 已提交
90 91 92 93
    PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences,
                      "The second dimension of Tensor padding should be the "
                      "number of sequences in LoDTensor seq.");

Y
Yancey1989 已提交
94
    const int64_t sequence_width = seq.numel() / seq_dims[0];
Y
Yiqun Liu 已提交
95 96 97 98 99 100 101 102 103 104
    PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width,
                      "The third dimension of Tensor padding should be the "
                      "width of sequence in LoDTensor seq.");

    if (!norm_by_times && num_sequences == 1UL) {
      Copy(seq, context.GetPlace(), context, &padding);
      padding.Resize(padding_dims);
      return;
    }

Y
Yancey1989 已提交
105
    const int64_t kBlockSize = 512;
Y
Yiqun Liu 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    /* At least use 32 threads to copy sequence_width elements,
     * and at least 8 elements for each thread.
     */
    size_t block_dim_x =
        std::min(((((sequence_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
    size_t block_dim_y = kBlockSize / block_dim_x;
    dim3 threads(block_dim_x, block_dim_y);

    size_t grid_dim_x = (max_sequence_length + block_dim_y - 1) / block_dim_y;
    size_t grid_dim_y = num_sequences;
    dim3 grid(grid_dim_x, grid_dim_y);

    const T* seq_data = seq.data<T>();
    T* padding_data = padding.data<T>();
    if (norm_by_times) {
      SequencePaddingKernel<T, 1, 1><<<grid, threads, 0, context.stream()>>>(
          padding_data, const_cast<T*>(seq_data), abs_offset_lod[level].data(),
          sequence_width, max_sequence_length, num_sequences);
    } else {
      SequencePaddingKernel<T, 0, 1><<<grid, threads, 0, context.stream()>>>(
          padding_data, const_cast<T*>(seq_data), abs_offset_lod[level].data(),
          sequence_width, max_sequence_length, num_sequences);
    }
  }
};

template <typename T>
class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  framework::LoDTensor& seq, const framework::Tensor& padding,
                  bool norm_by_times) {
    auto lod = seq.lod();
    PADDLE_ENFORCE_GT(lod.size(), 0UL,
                      "The lod of LoDTensor seq should not be null.");

    const size_t level = 0;
    framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);

    auto seq_dims = seq.dims();
Y
Yancey1989 已提交
147 148
    PADDLE_ENFORCE_EQ(seq_dims[0],
                      static_cast<int64_t>(abs_offset_lod[level].back()),
Y
Yiqun Liu 已提交
149 150 151 152 153 154 155 156
                      "The first dimension of LoDTensor seq should be "
                      "equal to the sum of all sequences's length.");

    auto padding_dims = padding.dims();
    PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL,
                      "The input padding should be a 3-D Tensor of shape "
                      "[max_sequnece_length, num_sequences, sequence_width].");

Y
Yancey1989 已提交
157
    int64_t max_sequence_length = MaximumSequenceLength(lod, level);
Y
Yiqun Liu 已提交
158 159 160 161
    PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length,
                      "The first dimension of Tensor padding should be "
                      "the maximum length of all sequences in LoDTensor seq.");

Y
Yancey1989 已提交
162
    const int64_t num_sequences = abs_offset_lod[level].size() - 1;
Y
Yiqun Liu 已提交
163 164 165 166
    PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences,
                      "The second dimension of Tensor padding should be "
                      "the number of sequences in LoDTensor seq.");

Y
Yancey1989 已提交
167
    const int64_t sequence_width = seq.numel() / seq_dims[0];
Y
Yiqun Liu 已提交
168 169 170 171 172 173 174 175 176 177
    PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width,
                      "The third dimension of Tensor padding should be the "
                      "width of sequence in LoDTensor seq.");

    if (!norm_by_times && num_sequences == 1UL) {
      Copy(padding, context.GetPlace(), context, &seq);
      seq.Resize(seq_dims);
      return;
    }

Y
Yancey1989 已提交
178
    const int64_t kBlockSize = 512;
Y
Yiqun Liu 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

    /* At least use 32 threads to copy sequence_width elements,
     * and at least 8 elements for each thread.
     */
    size_t block_dim_x =
        std::min(((((sequence_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
    size_t block_dim_y = kBlockSize / block_dim_x;
    dim3 threads(block_dim_x, block_dim_y);

    size_t grid_dim_x = (max_sequence_length + block_dim_y - 1) / block_dim_y;
    size_t grid_dim_y = num_sequences;
    dim3 grid(grid_dim_x, grid_dim_y);

    const T* padding_data = padding.data<T>();
    T* seq_data = seq.data<T>();
    if (norm_by_times) {
      SequencePaddingKernel<T, 1, 0><<<grid, threads, 0, context.stream()>>>(
          const_cast<T*>(padding_data), seq_data, abs_offset_lod[level].data(),
          sequence_width, max_sequence_length, num_sequences);
    } else {
      SequencePaddingKernel<T, 0, 0><<<grid, threads, 0, context.stream()>>>(
          const_cast<T*>(padding_data), seq_data, abs_offset_lod[level].data(),
          sequence_width, max_sequence_length, num_sequences);
    }
  }
};

template class PaddingLoDTensorFunctor<platform::CUDADeviceContext, float>;
template class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, float>;

}  // namespace math
}  // namespace operators
}  // namespace paddle