sequence_padding.cu 8.4 KB
Newer Older
Y
Yiqun Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/sequence_padding.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T, bool NormByTimes, bool Padding>
__global__ void SequencePaddingKernel(T* padding, T* sequence,
                                      const size_t* sequence_start_positions,
                                      const size_t sequence_width,
                                      const size_t max_sequence_length,
                                      const size_t num_sequences) {
  size_t padding_idx = blockIdx.y;
  size_t start_pos = sequence_start_positions[padding_idx];
  size_t sequence_length =
      sequence_start_positions[padding_idx + 1] - start_pos;

  size_t sequence_idx = blockIdx.x * blockDim.y + threadIdx.y;
  size_t padding_base_idx =
      (sequence_idx * num_sequences + padding_idx) * sequence_width;
  size_t sequence_base_idx = (start_pos + sequence_idx) * sequence_width;

  if (sequence_idx < sequence_length) {
    T scale = NormByTimes ? (1.0f / static_cast<T>(sequence_length)) : 1.0f;
    if (Padding) {
      /* sequence -> padding */
      for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) {
        padding[padding_base_idx + i] = scale * sequence[sequence_base_idx + i];
      }
    } else {
      /* padding -> sequence */
      for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) {
        sequence[sequence_base_idx + i] = scale * padding[padding_base_idx + i];
      }
    }
  } else if (sequence_idx < max_sequence_length) {
    if (Padding) {
      /* sequence -> padding */
      for (size_t i = threadIdx.x; i < sequence_width; i += blockDim.x) {
        padding[padding_base_idx + i] = 0;
      }
    }
  }
}

template <typename T>
class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::LoDTensor& seq, framework::Tensor& padding,
                  bool norm_by_times) {
    auto lod = seq.lod();
    PADDLE_ENFORCE_GT(lod.size(), 0UL,
                      "The lod of LoDTensor seq should not be null.");

    const size_t level = 0;
    framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);

    auto seq_dims = seq.dims();
    PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(),
                      "The first dimension of LoDTensor seq should be "
                      "equal to the sum of all sequences's length.");

    auto padding_dims = padding.dims();
    PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL,
                      "The input padding should be a 3-D Tensor of shape "
                      "[max_sequence_length, num_sequences, sequence_width].");

    size_t max_sequence_length = MaximumSequenceLength(lod, level);
    PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length,
                      "The first dimension of Tensor padding should be the "
                      "maximum length of all sequences in LoDTensor seq.");

    const size_t num_sequences = abs_offset_lod[level].size() - 1;
    PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences,
                      "The second dimension of Tensor padding should be the "
                      "number of sequences in LoDTensor seq.");

    const size_t sequence_width = seq.numel() / seq_dims[0];
    PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width,
                      "The third dimension of Tensor padding should be the "
                      "width of sequence in LoDTensor seq.");

    if (!norm_by_times && num_sequences == 1UL) {
      Copy(seq, context.GetPlace(), context, &padding);
      padding.Resize(padding_dims);
      return;
    }

    const size_t kBlockSize = 512;

    /* At least use 32 threads to copy sequence_width elements,
     * and at least 8 elements for each thread.
     */
    size_t block_dim_x =
        std::min(((((sequence_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
    size_t block_dim_y = kBlockSize / block_dim_x;
    dim3 threads(block_dim_x, block_dim_y);

    size_t grid_dim_x = (max_sequence_length + block_dim_y - 1) / block_dim_y;
    size_t grid_dim_y = num_sequences;
    dim3 grid(grid_dim_x, grid_dim_y);

    const T* seq_data = seq.data<T>();
    T* padding_data = padding.data<T>();
    if (norm_by_times) {
      SequencePaddingKernel<T, 1, 1><<<grid, threads, 0, context.stream()>>>(
          padding_data, const_cast<T*>(seq_data), abs_offset_lod[level].data(),
          sequence_width, max_sequence_length, num_sequences);
    } else {
      SequencePaddingKernel<T, 0, 1><<<grid, threads, 0, context.stream()>>>(
          padding_data, const_cast<T*>(seq_data), abs_offset_lod[level].data(),
          sequence_width, max_sequence_length, num_sequences);
    }
  }
};

template <typename T>
class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T> {
 public:
  void operator()(const platform::CUDADeviceContext& context,
                  framework::LoDTensor& seq, const framework::Tensor& padding,
                  bool norm_by_times) {
    auto lod = seq.lod();
    PADDLE_ENFORCE_GT(lod.size(), 0UL,
                      "The lod of LoDTensor seq should not be null.");

    const size_t level = 0;
    framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);

    auto seq_dims = seq.dims();
    PADDLE_ENFORCE_EQ(seq_dims[0], abs_offset_lod[level].back(),
                      "The first dimension of LoDTensor seq should be "
                      "equal to the sum of all sequences's length.");

    auto padding_dims = padding.dims();
    PADDLE_ENFORCE_EQ(padding_dims.size(), 3UL,
                      "The input padding should be a 3-D Tensor of shape "
                      "[max_sequnece_length, num_sequences, sequence_width].");

    size_t max_sequence_length = MaximumSequenceLength(lod, level);
    PADDLE_ENFORCE_EQ(padding_dims[0], max_sequence_length,
                      "The first dimension of Tensor padding should be "
                      "the maximum length of all sequences in LoDTensor seq.");

    const size_t num_sequences = abs_offset_lod[level].size() - 1;
    PADDLE_ENFORCE_EQ(padding_dims[1], num_sequences,
                      "The second dimension of Tensor padding should be "
                      "the number of sequences in LoDTensor seq.");

    const size_t sequence_width = seq.numel() / seq_dims[0];
    PADDLE_ENFORCE_EQ(padding_dims[2], sequence_width,
                      "The third dimension of Tensor padding should be the "
                      "width of sequence in LoDTensor seq.");

    if (!norm_by_times && num_sequences == 1UL) {
      Copy(padding, context.GetPlace(), context, &seq);
      seq.Resize(seq_dims);
      return;
    }

    const size_t kBlockSize = 512;

    /* At least use 32 threads to copy sequence_width elements,
     * and at least 8 elements for each thread.
     */
    size_t block_dim_x =
        std::min(((((sequence_width + 7) >> 3) + 31) >> 5) << 5, kBlockSize);
    size_t block_dim_y = kBlockSize / block_dim_x;
    dim3 threads(block_dim_x, block_dim_y);

    size_t grid_dim_x = (max_sequence_length + block_dim_y - 1) / block_dim_y;
    size_t grid_dim_y = num_sequences;
    dim3 grid(grid_dim_x, grid_dim_y);

    const T* padding_data = padding.data<T>();
    T* seq_data = seq.data<T>();
    if (norm_by_times) {
      SequencePaddingKernel<T, 1, 0><<<grid, threads, 0, context.stream()>>>(
          const_cast<T*>(padding_data), seq_data, abs_offset_lod[level].data(),
          sequence_width, max_sequence_length, num_sequences);
    } else {
      SequencePaddingKernel<T, 0, 0><<<grid, threads, 0, context.stream()>>>(
          const_cast<T*>(padding_data), seq_data, abs_offset_lod[level].data(),
          sequence_width, max_sequence_length, num_sequences);
    }
  }
};

template class PaddingLoDTensorFunctor<platform::CUDADeviceContext, float>;
template class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, float>;

}  // namespace math
}  // namespace operators
}  // namespace paddle