activation_op.h 23.8 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

22 23 24
template <typename Place, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
25
 public:
26 27
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
28 29 30 31 32 33 34 35 36
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
37 38 39 40 41

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
Q
qijun 已提交
42 43 44 45
    functor(place, x, y);
  }
};

46 47 48
template <typename Place, typename Functor>
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
49
 public:
50
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Input<framework::Tensor>("Y");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
64 65 66 67
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
Q
qijun 已提交
68 69 70 71
    functor(place, x, y, dy, dx);
  }
};

72 73 74 75 76 77 78 79 80
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

81
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
82
template <typename T>
83
struct SigmoidFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
84
  template <typename Device, typename X, typename Y>
85
  void operator()(Device d, X x, Y y) const {
86
    y.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
87 88 89
  }
};

90
template <typename T>
91
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
92
  template <typename Device, typename X, typename Y, typename dY, typename dX>
93
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
94
    dx.device(d) = dy * y * (static_cast<T>(1) - y);
Q
qijun 已提交
95 96 97
  }
};

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
// y = -log( exp(0) + exp(-x)) [since exp(0) = 1]
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    y.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
        dy * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
  }
};

Q
qijun 已提交
133
// exp(x) = e^x
134 135
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
136
  template <typename Device, typename X, typename Y>
137
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
138 139 140 141
    y.device(d) = x.exp();
  }
};

142 143
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
144
  template <typename Device, typename X, typename Y, typename dY, typename dX>
145
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Q
qijun 已提交
146
    dx.device(d) = dy * y;
Q
qijun 已提交
147 148 149
  }
};

Q
qijun 已提交
150
// relu(x) = max(x, 0)
Q
qijun 已提交
151
template <typename T>
152
struct ReluFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
153
  template <typename Device, typename X, typename Y>
154
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
155 156 157
    y.device(d) = x.cwiseMax(static_cast<T>(0));
  }
};
Q
qijun 已提交
158

Q
qijun 已提交
159
template <typename T>
160
struct ReluGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
161
  template <typename Device, typename X, typename Y, typename dY, typename dX>
162
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Q
qijun 已提交
163 164 165
    dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
  }
};
Q
qijun 已提交
166

167
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
168 169
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
170
  template <typename Device, typename X, typename Y>
171
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
172 173 174 175 176
    y.device(d) = x.tanh();
  }
};

template <typename T>
177
struct TanhGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
178
  template <typename Device, typename X, typename Y, typename dY, typename dX>
179
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
180
    dx.device(d) = dy * (static_cast<T>(1) - y * y);
Q
qijun 已提交
181 182 183
  }
};

K
Kavya Srinet 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x - x.tanh();
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) = dy * (x.tanh() * x.tanh());
  }
};

202 203 204 205 206 207 208 209 210 211 212
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
213 214
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
215 216 217 218 219 220 221 222 223 224 225 226 227 228
    y.device(d) = x * (temp1 + temp2);
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
229 230
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
231 232 233 234
    dx.device(d) = dy * (temp1 + temp2).template cast<T>();
  }
};

235 236 237 238 239 240 241 242 243 244 245
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < lambda; 0
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
246 247 248 249
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
    y.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
250 251 252 253 254 255 256 257 258 259 260
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
261 262 263
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
264 265 266 267
    dx.device(d) = dy * (temp1 + temp2).template cast<T>();
  }
};

Q
qijun 已提交
268
// sqrt(x) = x^(1/2)
269 270
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
271
  template <typename Device, typename X, typename Y>
272
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
273 274 275 276 277
    y.device(d) = x.sqrt();
  }
};

template <typename T>
278
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
279
  template <typename Device, typename X, typename Y, typename dY, typename dX>
280
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
281
    const Y y_conj = Eigen::numext::conj(y);
Q
qijun 已提交
282 283 284 285
    dx.device(d) = static_cast<T>(0.5) * dy / y_conj;
  }
};

Q
qijun 已提交
286
// abs(x) = |x|
287 288
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
289
  template <typename Device, typename X, typename Y>
290
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
291 292 293 294
    y.device(d) = x.abs();
  }
};

295 296
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
297
  template <typename Device, typename X, typename Y, typename dY, typename dX>
298
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
299 300 301 302
    dx.device(d) = dy * x.sign();
  }
};

Q
qijun 已提交
303 304
// reciprocal(x) = 1 / x
template <typename T>
305
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
306
  template <typename Device, typename X, typename Y>
307
  void operator()(Device d, X x, Y y) const {
308
    y.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
309 310 311
  }
};

312
template <typename T>
313
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
314
  template <typename Device, typename X, typename Y, typename dY, typename dX>
315
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
316
    dx.device(d) = dy * static_cast<T>(-1) * y * y;
Q
qijun 已提交
317 318 319 320
  }
};

// log(x) = natural logarithm of x
321 322
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
323
  template <typename Device, typename X, typename Y>
324
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
325 326 327 328
    y.device(d) = x.log();
  }
};

329
template <typename T>
330
struct LogGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
331
  template <typename Device, typename X, typename Y, typename dY, typename dX>
332
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
333
    dx.device(d) = dy * (static_cast<T>(1) / x);
Q
qijun 已提交
334 335 336 337
  }
};

// square(x) = x^2
338 339
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
340
  template <typename Device, typename X, typename Y>
341
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
342 343
    y.device(d) = x.square();
  }
344
};
Q
qijun 已提交
345

346
template <typename T>
347
struct SquareGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
348
  template <typename Device, typename X, typename Y, typename dY, typename dX>
349
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
350 351 352 353
    dx.device(d) = dy * static_cast<T>(2) * x;
  }
};

354 355 356 357 358 359 360 361 362 363
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
364

365 366
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
367 368
    y.device(d) =
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
369 370 371
  }
};

372 373 374 375 376 377 378 379 380
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
381 382 383
    dx.device(d) = dy *
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
384 385 386
  }
};

387 388 389 390 391 392 393 394 395 396 397
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
398 399
    y.device(d) =
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
400 401 402 403 404 405 406 407 408 409 410
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
411 412 413
    dx.device(d) = dy *
                   ((x > static_cast<T>(0)) * (x < static_cast<T>(threshold)))
                       .template cast<T>();
414 415 416
  }
};

K
kexinzhao 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
    y.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
    dx.device(d) = dy * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
  }
};

444 445
// softsign(x) = x / (1 + |x|)
template <typename T>
446
struct SoftsignFunctor : public BaseActivationFunctor<T> {
447 448 449 450 451 452 453 454 455
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x / (static_cast<T>(1) + x.abs());
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
456
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
457 458 459 460 461 462 463
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) =
        dy * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
  }
};

464 465 466 467 468 469
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
470

471 472
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
473 474
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
475
    y.device(d) = (static_cast<T>(1) + temp.exp()).log();
476 477 478
  }
};

479 480 481 482 483 484 485 486
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
487 488
    auto tmp = static_cast<T>(threshold);
    auto temp = ((x > -tmp) * (x < tmp)).template cast<T>().eval();
489
    dx.device(d) = dy * (static_cast<T>(1) - (-y).exp()) * temp;
490 491 492
  }
};

K
Kavya Srinet 已提交
493 494 495 496 497 498
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
499

K
Kavya Srinet 已提交
500 501
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
502
    y.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
503 504 505
  }
};

K
Kavya Srinet 已提交
506 507 508 509 510 511 512 513
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
514 515
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
516 517
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
    dx.device(d) = dy * (temp1 + temp2).template cast<T>();
518 519 520
  }
};

521 522 523 524 525 526
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
527

528 529
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
530 531 532
    y.device(d) = x.cwiseMax(static_cast<T>(0)) +
                  (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                      .cwiseMin(static_cast<T>(0));
533 534 535
  }
};

536 537 538 539 540 541 542 543
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
544 545 546
    dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>() +
                   dy * (y + static_cast<T>(alpha)) *
                       (x < static_cast<T>(0)).template cast<T>();
547 548 549
  }
};

Q
QI JUN 已提交
550
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
551 552 553 554 555 556 557 558
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
559
    y.device(d) = x.pow(static_cast<T>(factor));
560 561 562
  }
};

563 564 565 566 567 568 569 570
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
571 572
    dx.device(d) = dy * static_cast<T>(factor) *
                   x.pow(static_cast<T>(factor - static_cast<T>(1)));
573 574 575
  }
};

576 577 578 579 580 581 582
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
583

584 585
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
586 587
    y.device(d) =
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
588 589 590
  }
};

591 592 593 594 595 596 597
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
598

599 600
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
601 602 603 604
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
    dx.device(d) = dy * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
605 606 607
  }
};

608 609 610 611 612 613 614 615 616
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
Y
Yu Yang 已提交
617 618
    auto th = static_cast<T>(threshold);
    y.device(d) = (x > th).template cast<T>() * x;
619 620 621 622 623 624 625 626 627 628 629 630
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Y
Yu Yang 已提交
631 632
    auto th = static_cast<T>(threshold);
    dx.device(d) = dy * (x > th).template cast<T>();
633 634 635
  }
};

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
    y.device(d) = temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) =
        dy *
        ((y > static_cast<T>(0)) * (y < static_cast<T>(1))).template cast<T>() *
        static_cast<T>(slope);
  }
};

Q
qijun 已提交
668 669
}  // namespace operators
}  // namespace paddle
670

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
  __macro(relu, ReluFunctor, ReluGradFunctor);                       \
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
695
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);