activation_op.h 18.7 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

22 23 24
template <typename Place, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
25
 public:
26 27
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
28 29 30 31 32 33 34 35 36
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
37 38 39 40 41

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
Q
qijun 已提交
42 43 44 45
    functor(place, x, y);
  }
};

46 47 48
template <typename Place, typename Functor>
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
49
 public:
50
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Input<framework::Tensor>("Y");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
64 65 66 67
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
Q
qijun 已提交
68 69 70 71
    functor(place, x, y, dy, dx);
  }
};

72 73 74 75 76 77 78 79 80
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

81
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
82
template <typename T>
83
struct SigmoidFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
84
  template <typename Device, typename X, typename Y>
85
  void operator()(Device d, X x, Y y) const {
86
    y.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
87 88 89
  }
};

90
template <typename T>
91
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
92
  template <typename Device, typename X, typename Y, typename dY, typename dX>
93
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
94
    dx.device(d) = dy * y * (static_cast<T>(1) - y);
Q
qijun 已提交
95 96 97
  }
};

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
// y = -log( exp(0) + exp(-x)) [since exp(0) = 1]
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    y.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
        dy * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
  }
};

Q
qijun 已提交
133
// exp(x) = e^x
134 135
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
136
  template <typename Device, typename X, typename Y>
137
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
138 139 140 141
    y.device(d) = x.exp();
  }
};

142 143
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
144
  template <typename Device, typename X, typename Y, typename dY, typename dX>
145
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Q
qijun 已提交
146
    dx.device(d) = dy * y;
Q
qijun 已提交
147 148 149
  }
};

Q
qijun 已提交
150
// relu(x) = max(x, 0)
Q
qijun 已提交
151
template <typename T>
152
struct ReluFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
153
  template <typename Device, typename X, typename Y>
154
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
155 156 157
    y.device(d) = x.cwiseMax(static_cast<T>(0));
  }
};
Q
qijun 已提交
158

Q
qijun 已提交
159
template <typename T>
160
struct ReluGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
161
  template <typename Device, typename X, typename Y, typename dY, typename dX>
162
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
Q
qijun 已提交
163 164 165
    dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
  }
};
Q
qijun 已提交
166

167
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
168 169
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
170
  template <typename Device, typename X, typename Y>
171
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
172 173 174 175 176
    y.device(d) = x.tanh();
  }
};

template <typename T>
177
struct TanhGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
178
  template <typename Device, typename X, typename Y, typename dY, typename dX>
179
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
180
    dx.device(d) = dy * (static_cast<T>(1) - y * y);
Q
qijun 已提交
181 182 183
  }
};

K
Kavya Srinet 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x - x.tanh();
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) = dy * (x.tanh() * x.tanh());
  }
};

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < lambda; 0
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    auto temp1 = (x > lambda).template cast<T>().eval();
    auto temp2 = (x < -lambda).template cast<T>().eval();
    y.device(d) = temp1 * (x - lambda) + temp2 * (x + lambda);
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    auto temp1 = (x > lambda).template cast<T>().eval();
    auto temp2 = (x < -lambda).template cast<T>().eval();
    dx.device(d) = dy * (temp1 + temp2).template cast<T>();
  }
};

Q
qijun 已提交
233
// sqrt(x) = x^(1/2)
234 235
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
236
  template <typename Device, typename X, typename Y>
237
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
238 239 240 241 242
    y.device(d) = x.sqrt();
  }
};

template <typename T>
243
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
244
  template <typename Device, typename X, typename Y, typename dY, typename dX>
245
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
246
    const Y y_conj = Eigen::numext::conj(y);
Q
qijun 已提交
247 248 249 250
    dx.device(d) = static_cast<T>(0.5) * dy / y_conj;
  }
};

Q
qijun 已提交
251
// abs(x) = |x|
252 253
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
254
  template <typename Device, typename X, typename Y>
255
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
256 257 258 259
    y.device(d) = x.abs();
  }
};

260 261
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
262
  template <typename Device, typename X, typename Y, typename dY, typename dX>
263
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
264 265 266 267
    dx.device(d) = dy * x.sign();
  }
};

Q
qijun 已提交
268 269
// reciprocal(x) = 1 / x
template <typename T>
270
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
271
  template <typename Device, typename X, typename Y>
272
  void operator()(Device d, X x, Y y) const {
273
    y.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
274 275 276
  }
};

277
template <typename T>
278
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
279
  template <typename Device, typename X, typename Y, typename dY, typename dX>
280
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
281
    dx.device(d) = dy * static_cast<T>(-1) * y * y;
Q
qijun 已提交
282 283 284 285
  }
};

// log(x) = natural logarithm of x
286 287
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
288
  template <typename Device, typename X, typename Y>
289
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
290 291 292 293
    y.device(d) = x.log();
  }
};

294
template <typename T>
295
struct LogGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
296
  template <typename Device, typename X, typename Y, typename dY, typename dX>
297
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
298
    dx.device(d) = dy * (static_cast<T>(1) / x);
Q
qijun 已提交
299 300 301 302
  }
};

// square(x) = x^2
303 304
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
305
  template <typename Device, typename X, typename Y>
306
  void operator()(Device d, X x, Y y) const {
Q
qijun 已提交
307 308
    y.device(d) = x.square();
  }
309
};
Q
qijun 已提交
310

311
template <typename T>
312
struct SquareGradFunctor : public BaseActivationFunctor<T> {
Q
qijun 已提交
313
  template <typename Device, typename X, typename Y, typename dY, typename dX>
314
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
315 316 317 318
    dx.device(d) = dy * static_cast<T>(2) * x;
  }
};

319 320 321 322 323 324 325 326 327 328
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
329

330 331 332
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x.cwiseMax(t_min).cwiseMin(t_max);
333 334 335
  }
};

336 337 338 339 340 341 342 343 344 345
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) = dy * ((x > t_min) * (x < t_max)).template cast<T>();
346 347 348
  }
};

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x.cwiseMax(static_cast<T>(0)).cwiseMin(threshold);
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) =
        dy * ((x > static_cast<T>(0)) * (x < threshold)).template cast<T>();
  }
};

379 380
// softsign(x) = x / (1 + |x|)
template <typename T>
381
struct SoftsignFunctor : public BaseActivationFunctor<T> {
382 383 384 385 386 387 388 389 390
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x / (static_cast<T>(1) + x.abs());
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
391
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
392 393 394 395 396 397 398
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) =
        dy * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
  }
};

399 400 401 402 403 404
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
405

406 407 408 409
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    auto temp = x.cwiseMax(-threshold).cwiseMin(threshold);
    y.device(d) = (static_cast<T>(1) + temp.exp()).log();
410 411 412
  }
};

413 414 415 416 417 418 419 420
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
421
    auto temp = ((x > -threshold) * (x < threshold)).template cast<T>().eval();
422
    dx.device(d) = dy * (static_cast<T>(1) - (-y).exp()) * temp;
423 424 425
  }
};

K
Kavya Srinet 已提交
426 427 428 429 430 431
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
432

K
Kavya Srinet 已提交
433 434 435
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x.cwiseMax(alpha * x);
436 437 438
  }
};

K
Kavya Srinet 已提交
439 440 441 442 443 444 445 446 447 448 449
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    auto temp1 = alpha * (x < static_cast<T>(0)).template cast<T>().eval();
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
    dx.device(d) = dy * (temp1 + temp2).template cast<T>();
450 451 452
  }
};

453 454 455 456 457 458
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
459

460 461 462
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) =
463 464 465 466 467
        x.cwiseMax(static_cast<T>(0)) +
        (alpha * (x.exp() - static_cast<T>(1))).cwiseMin(static_cast<T>(0));
  }
};

468 469 470 471 472 473 474 475 476
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) =
477 478 479 480 481
        dy * (x > static_cast<T>(0)).template cast<T>() +
        dy * (y + alpha) * (x < static_cast<T>(0)).template cast<T>();
  }
};

482 483 484 485 486 487 488 489 490
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = x.pow(factor);
491 492 493
  }
};

494 495 496 497 498 499 500 501 502
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
    dx.device(d) = dy * factor * x.pow(factor - static_cast<T>(1));
503 504 505
  }
};

506 507 508 509 510 511 512
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
513

514 515 516
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) const {
    y.device(d) = scale_b * (scale_a * x).tanh();
517 518 519
  }
};

520 521 522 523 524 525 526
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
527

528 529
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) const {
530
    auto temp = (scale_a * x).tanh() * (scale_a * x).tanh();
531
    dx.device(d) = dy * scale_a * scale_b * (static_cast<T>(1) - temp);
Q
qijun 已提交
532 533 534
  }
};

Q
qijun 已提交
535 536
}  // namespace operators
}  // namespace paddle
537

538 539
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                          \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);           \
540
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);  \
541 542 543
  __macro(exp, ExpFunctor, ExpGradFunctor);                       \
  __macro(relu, ReluFunctor, ReluGradFunctor);                    \
  __macro(tanh, TanhFunctor, TanhGradFunctor);                    \
544
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);  \
545 546 547 548 549 550 551 552 553 554
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                    \
  __macro(abs, AbsFunctor, AbsGradFunctor);                       \
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);  \
  __macro(log, LogFunctor, LogGradFunctor);                       \
  __macro(square, SquareFunctor, SquareGradFunctor);              \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                 \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);       \
  __macro(pow, PowFunctor, PowGradFunctor);                       \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                 \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);        \
Z
zhouxiao-coder 已提交
555
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                 \
556
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);    \
557 558
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor); \
  __macro(elu, ELUFunctor, ELUGradFunctor)