test_CompareTwoNets.cpp 6.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/utils/PythonUtil.h>
#include <cstdlib>
#include <algorithm>
#include <gtest/gtest.h>

#include "paddle/trainer/Trainer.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

P_DECLARE_int32(gpu_id);

P_DECLARE_bool(local);
P_DECLARE_bool(use_gpu);

P_DECLARE_string(config);
P_DECLARE_string(nics);

P_DEFINE_string(config_file_a, "", "config of one network to compare");
P_DEFINE_string(config_file_b, "", "config of another network to compare");
35 36
P_DEFINE_bool(need_high_accuracy,
              false,
Z
zhangjinchao01 已提交
37 38
              "whether need to run in double accuracy");
P_DEFINE_double(
39 40
    max_diff_ratio,
    0.0f,
Z
zhangjinchao01 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    "max diff ratio allowed for outputs and parameters (value/gradient)");
P_DECLARE_bool(thread_local_rand_use_global_seed);
P_DECLARE_int32(seed);

struct ComData {
  vector<Argument> outArgs;
  vector<ParameterPtr> parameters;
};

void calcGradient(ComData& data, const string configFile) {
  FLAGS_config = configFile;

  FLAGS_local = true;
  FLAGS_use_gpu = false;

  FLAGS_nics = "";

  *ThreadLocalRand::getSeed() = FLAGS_seed;
  srand(FLAGS_seed);

  Trainer trainer;
  trainer.init(TrainerConfigHelper::createFromFlagConfig(), false);

  data.parameters = trainer.getGradientMachine()->getParameters();

  DataBatch dataBatch;
  int32_t batchSize = trainer.getConfig().opt_config().batch_size();

  trainer.getDataProvider()->setSkipShuffle();
  trainer.getDataProvider()->getNextBatch(batchSize, &dataBatch);

  CHECK(dataBatch.getSize()) << "No data from data provider";
  vector<Argument>& inArgs = dataBatch.getStreams();

  trainer.getGradientMachine()->start(trainer.getConfig(), nullptr);
76 77
  trainer.getGradientMachine()->forwardBackward(
      inArgs, &data.outArgs, PASS_TRAIN);
Z
zhangjinchao01 已提交
78 79 80 81

  trainer.getGradientMachine()->finish();
}

82 83 84 85 86 87
void checkBuffer(real* A,
                 const char* desA,
                 real* B,
                 const char* desB,
                 size_t len,
                 size_t width = 1) {
Z
zhangjinchao01 已提交
88 89 90 91 92 93 94 95 96 97 98
  int nNum = 0;
  real maxVal = 0;
  for (size_t i = 0; i < len; ++i) {
    maxVal = std::max(maxVal, std::max(A[i], B[i]));
  }
  real maxDiff = 0;
  for (size_t i = 0; i < len; ++i) {
    real diff = fabs(A[i] - B[i]);
    maxDiff = std::max(maxDiff, diff);
    if (diff > maxVal * FLAGS_max_diff_ratio) {
      nNum++;
99 100
      VLOG(1) << "Row: " << i / width << ", " << desA << " : " << A[i] << "    "
              << desB << " : " << B[i] << " diff=" << diff;
Z
zhangjinchao01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    }
  }
  EXPECT_EQ(0, nNum);
  LOG(INFO) << "maxValue=" << maxVal << " maxDiff=" << maxDiff << "\n\n";
}

void compareGradient(ComData& comDataA, ComData& comDataB) {
  vector<Argument> outArgsA = comDataA.outArgs;
  vector<Argument> outArgsB = comDataB.outArgs;

  for (size_t i = 0; i < outArgsA.size(); ++i) {
    CpuMatrix matA(outArgsA[i].value->getHeight(),
                   outArgsA[i].value->getWidth());
    CpuMatrix matB(outArgsB[i].value->getHeight(),
                   outArgsB[i].value->getWidth());

    matA.copyFrom(*outArgsA[i].value);
    matB.copyFrom(*outArgsB[i].value);

    LOG(INFO) << "\n--------------------------------"
              << " Check Network Output_" << i << ":"
              << " -------------------------------------\n";
123 124 125 126 127 128
    checkBuffer(matA.getData(),
                "network A output",
                matB.getData(),
                "network B output",
                matA.getElementCnt(),
                matA.getWidth());
Z
zhangjinchao01 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  }

  vector<ParameterPtr>& parametersA = comDataA.parameters;
  vector<ParameterPtr>& parametersB = comDataB.parameters;

  LOG(INFO) << "\n\n--------------------------------"
            << " Check Gradient Machine Parameters:"
            << " -------------------------------------\n";
  for (size_t i = 0; i < parametersA.size(); ++i) {
    ParameterPtr parameterA, parameterB;
    parameterA = parametersA[i];
    parameterB = parametersB[i];

    CpuVector paraA(parameterA->getSize());
    CpuVector paraB(parameterB->getSize());
    paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE));
    paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE));

    LOG(INFO) << "\n\n----------- PARAMETER_VALUE:  " << parameterA->getName()
              << " ; size : " << paraA.getSize() << " ------------";
149 150 151 152
    checkBuffer(paraA.getData(),
                "Network A",
                paraB.getData(),
                "Network B",
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159
                paraA.getSize());

    CpuVector gradA(*parameterA->getBuf(PARAMETER_GRADIENT));
    CpuVector gradB(*parameterB->getBuf(PARAMETER_GRADIENT));

    LOG(INFO) << "\n\n----------- PARAMETER_GRADIENT: " << parameterA->getName()
              << " ; size : " << gradA.getSize() << " -----------";
160 161 162 163
    checkBuffer(gradA.getData(),
                "Network A",
                gradB.getData(),
                "Network B",
Z
zhangjinchao01 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
                gradA.getSize());
  }
}

TEST(Trainer, create) {
  ComData dataA;
  calcGradient(dataA, FLAGS_config_file_a);
  LOG(INFO) << "\n\nforwardBackward of Network A is finished\n\n";

  ComData dataB;
  calcGradient(dataB, FLAGS_config_file_b);
  LOG(INFO) << "\n\nforwardBackward of the Network B is finished\n\n";

  compareGradient(dataA, dataB);
}

int main(int argc, char** argv) {
  FLAGS_thread_local_rand_use_global_seed = true;
  paddle::initMain(argc, argv);
  testing::InitGoogleTest(&argc, argv);
  initPython(argc, argv);

#ifndef PADDLE_TYPE_DOUBLE
  if (FLAGS_need_high_accuracy) {
    LOG(INFO) << "skip test due to it's need high accuracy";
    return 0;
  }
  if (FLAGS_max_diff_ratio == 0.0f) {
    FLAGS_max_diff_ratio = 1e-5;
    LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
              << " in low accuracy mode";
  }
#else
  if (FLAGS_max_diff_ratio == 0.0f) {
    FLAGS_max_diff_ratio = 1e-10;
    LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
              << " in high accuracy mode";
  }
#endif

  int ret = RUN_ALL_TESTS();
  return ret;
}