jit_kernel_lstm.cc 11.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17 18
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/macros.h"
T
tensor-tang 已提交
20 21 22 23

#ifdef __AVX__
#include <immintrin.h>
#endif
T
tensor-tang 已提交
24 25 26 27

namespace paddle {
namespace operators {
namespace math {
T
tensor-tang 已提交
28 29 30 31 32
#ifdef __AVX__
namespace detail {
__m256 Exp(__m256 a);
}  // namespace detail
#endif
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34
namespace jitkernel {
T
tensor-tang 已提交
35 36
namespace jit = platform::jit;

T
tensor-tang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#ifdef __AVX__
typedef enum { kSigmoid, kRelu, kTanh, kIdentity } act_type;

class AVXAct {
 public:
  virtual ~AVXAct() = default;
  virtual __m256 Compute(__m256 x) const = 0;
};

template <act_type type>
class AVXActImpl : public AVXAct {
 public:
  __m256 Compute(__m256 x) const override { PADDLE_THROW("Unkown type!"); }
};

template <>
__m256 AVXActImpl<kSigmoid>::Compute(__m256 x) const {
  __m256 ones = _mm256_set1_ps(1.0f);
  x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN));
  x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX));
  x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x);
  x = detail::Exp(x);
  x = _mm256_add_ps(ones, x);
  return _mm256_div_ps(ones, x);
}

template <>
__m256 AVXActImpl<kTanh>::Compute(__m256 x) const {
  __m256 ones = _mm256_set1_ps(1.0f);
  x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x);
  x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT));
  x = detail::Exp(x);
  x = _mm256_add_ps(ones, x);
  x = _mm256_div_ps(_mm256_set1_ps(2.0f), x);
  return _mm256_sub_ps(x, ones);
}

template <>
__m256 AVXActImpl<kRelu>::Compute(__m256 x) const {
  return _mm256_max_ps(x, _mm256_setzero_ps());
}

template <>
__m256 AVXActImpl<kIdentity>::Compute(__m256 x) const {
  return x;
}
#endif

T
tensor-tang 已提交
85 86 87 88
/* LSTM JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class LSTMKernelImpl : public LSTMKernel<T> {
 public:
T
tensor-tang 已提交
89
  explicit LSTMKernelImpl(const std::string& act_gate,
T
tensor-tang 已提交
90
                          const std::string& act_cand,
T
tensor-tang 已提交
91
                          const std::string& act_cell, int d)
T
tensor-tang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
    auto GetActKernel = [&](const std::string& type,
                            int n) -> std::shared_ptr<const VActKernel<T>> {
      if (type == "sigmoid") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VSigmoidKernel<T>>(n));
      } else if (type == "relu") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VReluKernel<T>>(n));
      } else if (type == "tanh") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VTanhKernel<T>>(n));
      } else if (type == "identity" || type == "") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VIdentityKernel<T>>(n));
      }
      PADDLE_THROW("Not support type: %s", type);
    };
    act_gate_3d_ = GetActKernel(act_gate, d * 3);
    act_cand_d_ = GetActKernel(act_cand, d);
    act_cell_d_ = GetActKernel(act_cell, d);
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
T
tensor-tang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef __AVX__
    auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> {
      if (type == "sigmoid") {
        return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid>());
      } else if (type == "relu") {
        return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu>());
      } else if (type == "tanh") {
        return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh>());
      } else if (type == "identity" || type == "") {
        return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity>());
      }
      PADDLE_THROW("Not support type: %s", type);
    };
    avx_act_gate_ = GetAVXAct(act_gate);
    avx_act_cand_ = GetAVXAct(act_cand);
    avx_act_cell_ = GetAVXAct(act_cell);
#endif
T
tensor-tang 已提交
135 136
  }

T
tensor-tang 已提交
137 138
  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht,
                   T* checked) const override {
T
tensor-tang 已提交
139 140 141 142 143 144 145 146 147 148 149 150
    // gates: W_ch, W_ih, W_fh, W_oh
    act_gate_3d_->Compute(gates + d_, gates + d_);

    /* C_t = C_t-1 * fgated + cand_gated * igated */
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);

    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
T
tensor-tang 已提交
151
  }
T
tensor-tang 已提交
152 153 154 155 156 157

 private:
  int d_, d2_, d3_;
  std::shared_ptr<const VActKernel<T>> act_gate_3d_, act_cand_d_, act_cell_d_;
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
  std::shared_ptr<const VAddKernel<T>> vadd_d_;
T
tensor-tang 已提交
158 159 160
#ifdef __AVX__
  std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_cand_, avx_act_cell_;
#endif
T
tensor-tang 已提交
161 162
};

T
tensor-tang 已提交
163 164 165
#define INTRI8_FLOAT(isa)                                                    \
  template <>                                                                \
  void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt(                        \
T
tensor-tang 已提交
166 167
      float* gates, const float* ct_1, float* ct, float* ht, float* checked) \
      const {                                                                \
T
tensor-tang 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    /* gates: W_ch, W_ih, W_fh, W_oh */                                      \
    __m256 c, i, f, o;                                                       \
    c = _mm256_loadu_ps(gates);                                              \
    i = _mm256_loadu_ps(gates + 8);                                          \
    f = _mm256_loadu_ps(gates + 16);                                         \
    o = _mm256_loadu_ps(gates + 24);                                         \
    /* C_t = C_t-1 * fgated + cand_gated * igated*/                          \
    c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
    i = _mm256_loadu_ps(ct_1);                                               \
    f = _mm256_mul_ps(i, avx_act_gate_->Compute(f));                         \
    f = _mm256_add_ps(c, f);                                                 \
    _mm256_storeu_ps(ct, f);                                                 \
    /* H_t = act_cell(C_t) * ogated */                                       \
    o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
    _mm256_storeu_ps(ht, o);                                                 \
  }

// TODO(TJ): optimize keq16

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/* Peephole JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class PeepholeKernelImpl : public LSTMKernel<T> {
 public:
  explicit PeepholeKernelImpl(const std::string& act_gate,
                              const std::string& act_cand,
                              const std::string& act_cell, int d)
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
    auto GetActKernel = [&](const std::string& type,
                            int n) -> std::shared_ptr<const VActKernel<T>> {
      if (type == "sigmoid") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VSigmoidKernel<T>>(n));
      } else if (type == "relu") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VReluKernel<T>>(n));
      } else if (type == "tanh") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VTanhKernel<T>>(n));
      } else if (type == "identity" || type == "") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VIdentityKernel<T>>(n));
      }
      PADDLE_THROW("Not support type: %s", type);
    };
    act_gate_3d_ = GetActKernel(act_gate, d * 3);
    act_cand_d_ = GetActKernel(act_cand, d);
    act_cell_d_ = GetActKernel(act_cell, d);
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
  }

  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht,
                   T* checked) const override {
    // gates: W_ch, W_ih, W_fh, W_oh
    act_gate_3d_->Compute(gates + d_, gates + d_);

    /* C_t = C_t-1 * fgated + cand_gated * igated */
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);

    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
  }
T
tensor-tang 已提交
247

T
tensor-tang 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261
 private:
  int d_, d2_, d3_;
  std::shared_ptr<const VActKernel<T>> act_gate_3d_, act_cand_d_, act_cell_d_;
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
  std::shared_ptr<const VAddKernel<T>> vadd_d_;
};

#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype)                  \
  template <>                                                         \
  std::shared_ptr<const LSTMKernel<ker_dtype>>                        \
  KernelPool::Get<LSTMKernel<ker_dtype>, const std::string&,          \
                  const std::string&, const std::string&, int, bool>( \
      const std::string& act_gate, const std::string& act_cand,       \
      const std::string& act_cell, int d, bool use_peephole)
T
tensor-tang 已提交
262

T
tensor-tang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276
#define JITKERNEL_KEY_LSTM(ker_key, dtype_key)                               \
  #ker_key #dtype_key + std::to_string(d) + act_gate + act_cand + act_cell + \
                                       (use_peephole ? "p" : "n")

#define JITKERNEL_NEW_LSTM_IMPL(ker, dtype, isa, k)                    \
  if (use_peephole) {                                                  \
    p = std::dynamic_pointer_cast<ker<dtype>>(                         \
        std::make_shared<PeepholeKernelImpl<dtype, isa, k>>(           \
            act_gate, act_cand, act_cell, d));                         \
  } else {                                                             \
    p = std::dynamic_pointer_cast<ker<dtype>>(                         \
        std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_cand, \
                                                   act_cell, d));      \
  }
T
tensor-tang 已提交
277 278 279 280

REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
                        JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);

T
tensor-tang 已提交
281
#undef INTRI8_FLOAT
T
tensor-tang 已提交
282 283 284
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
T
tensor-tang 已提交
285 286 287 288
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle