jit_kernel_lstm.cc 8.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17 18
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/macros.h"
T
tensor-tang 已提交
20 21 22 23

#ifdef __AVX__
#include <immintrin.h>
#endif
T
tensor-tang 已提交
24 25 26 27

namespace paddle {
namespace operators {
namespace math {
T
tensor-tang 已提交
28 29 30 31 32
#ifdef __AVX__
namespace detail {
__m256 Exp(__m256 a);
}  // namespace detail
#endif
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34
namespace jitkernel {
T
tensor-tang 已提交
35 36
namespace jit = platform::jit;

T
tensor-tang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#ifdef __AVX__
typedef enum { kSigmoid, kRelu, kTanh, kIdentity } act_type;

class AVXAct {
 public:
  virtual ~AVXAct() = default;
  virtual __m256 Compute(__m256 x) const = 0;
};

template <act_type type>
class AVXActImpl : public AVXAct {
 public:
  __m256 Compute(__m256 x) const override { PADDLE_THROW("Unkown type!"); }
};

template <>
__m256 AVXActImpl<kSigmoid>::Compute(__m256 x) const {
  __m256 ones = _mm256_set1_ps(1.0f);
  x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN));
  x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX));
  x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x);
  x = detail::Exp(x);
  x = _mm256_add_ps(ones, x);
  return _mm256_div_ps(ones, x);
}

template <>
__m256 AVXActImpl<kTanh>::Compute(__m256 x) const {
  __m256 ones = _mm256_set1_ps(1.0f);
  x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x);
  x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT));
  x = detail::Exp(x);
  x = _mm256_add_ps(ones, x);
  x = _mm256_div_ps(_mm256_set1_ps(2.0f), x);
  return _mm256_sub_ps(x, ones);
}

template <>
__m256 AVXActImpl<kRelu>::Compute(__m256 x) const {
  return _mm256_max_ps(x, _mm256_setzero_ps());
}

template <>
__m256 AVXActImpl<kIdentity>::Compute(__m256 x) const {
  return x;
}
#endif

T
tensor-tang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/* LSTM JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class LSTMKernelImpl : public LSTMKernel<T> {
 public:
  explicit LSTMKernelImpl(int d, const std::string& act_gate,
                          const std::string& act_cand,
                          const std::string& act_cell)
      : LSTMKernel<T>() {
    d_ = d;
    d2_ = d * 2;
    d3_ = d * 3;
    auto GetActKernel = [&](const std::string& type,
                            int n) -> std::shared_ptr<const VActKernel<T>> {
      if (type == "sigmoid") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VSigmoidKernel<T>>(n));
      } else if (type == "relu") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VReluKernel<T>>(n));
      } else if (type == "tanh") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VTanhKernel<T>>(n));
      } else if (type == "identity" || type == "") {
        return std::dynamic_pointer_cast<const VActKernel<T>>(
            KernelPool::Instance().template Get<VIdentityKernel<T>>(n));
      }
      PADDLE_THROW("Not support type: %s", type);
    };
    act_gate_3d_ = GetActKernel(act_gate, d * 3);
    act_cand_d_ = GetActKernel(act_cand, d);
    act_cell_d_ = GetActKernel(act_cell, d);
    vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
    vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
T
tensor-tang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef __AVX__
    auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> {
      if (type == "sigmoid") {
        return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid>());
      } else if (type == "relu") {
        return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu>());
      } else if (type == "tanh") {
        return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh>());
      } else if (type == "identity" || type == "") {
        return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity>());
      }
      PADDLE_THROW("Not support type: %s", type);
    };
    avx_act_gate_ = GetAVXAct(act_gate);
    avx_act_cand_ = GetAVXAct(act_cand);
    avx_act_cell_ = GetAVXAct(act_cell);
#endif
T
tensor-tang 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  }

  void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht) const override {
    // gates: W_ch, W_ih, W_fh, W_oh
    act_gate_3d_->Compute(gates + d_, gates + d_);

    /* C_t = C_t-1 * fgated + cand_gated * igated */
    act_cand_d_->Compute(gates, gates);
    vmul_d_->Compute(gates, gates + d_, gates + d_);
    vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
    vadd_d_->Compute(gates + d_, gates + d2_, ct);

    /* H_t = act_cell(C_t) * ogated */
    act_cell_d_->Compute(ct, gates + d2_);
    vmul_d_->Compute(gates + d2_, gates + d3_, ht);
T
tensor-tang 已提交
150
  }
T
tensor-tang 已提交
151 152 153 154 155 156

 private:
  int d_, d2_, d3_;
  std::shared_ptr<const VActKernel<T>> act_gate_3d_, act_cand_d_, act_cell_d_;
  std::shared_ptr<const VMulKernel<T>> vmul_d_;
  std::shared_ptr<const VAddKernel<T>> vadd_d_;
T
tensor-tang 已提交
157 158 159
#ifdef __AVX__
  std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_cand_, avx_act_cell_;
#endif
T
tensor-tang 已提交
160 161
};

T
tensor-tang 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define INTRI8_FLOAT(isa)                                                    \
  template <>                                                                \
  void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt(                        \
      float* gates, const float* ct_1, float* ct, float* ht) const {         \
    /* gates: W_ch, W_ih, W_fh, W_oh */                                      \
    __m256 c, i, f, o;                                                       \
    c = _mm256_loadu_ps(gates);                                              \
    i = _mm256_loadu_ps(gates + 8);                                          \
    f = _mm256_loadu_ps(gates + 16);                                         \
    o = _mm256_loadu_ps(gates + 24);                                         \
    /* C_t = C_t-1 * fgated + cand_gated * igated*/                          \
    c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
    i = _mm256_loadu_ps(ct_1);                                               \
    f = _mm256_mul_ps(i, avx_act_gate_->Compute(f));                         \
    f = _mm256_add_ps(c, f);                                                 \
    _mm256_storeu_ps(ct, f);                                                 \
    /* H_t = act_cell(C_t) * ogated */                                       \
    o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
    _mm256_storeu_ps(ht, o);                                                 \
  }

// TODO(TJ): optimize keq16

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype)                   \
  template <>                                                          \
  std::shared_ptr<const ker_class<ker_dtype>>                          \
  KernelPool::Get<ker_class<ker_dtype>, int, const std::string&,       \
                  const std::string&, const std::string&>(             \
      int d, const std::string& act_gate, const std::string& act_cand, \
      const std::string& act_cell)

#define JITKERNEL_KEY_LSTM(ker_key, dtype_key) \
  #ker_key #dtype_key + std::to_string(d) + act_gate + act_cand + act_cell

#define JITKERNEL_NEW_LSTM_IMPL(ker, dtype, isa, k)                     \
  p = std::dynamic_pointer_cast<ker<dtype>>(                            \
      std::make_shared<ker##Impl<dtype, isa, k>>(d, act_gate, act_cand, \
                                                 act_cell))

REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
                        JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);

T
tensor-tang 已提交
214
#undef INTRI8_FLOAT
T
tensor-tang 已提交
215 216 217
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
T
tensor-tang 已提交
218 219 220 221 222

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle