mul_op.cc 12.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33 34
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                      "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of MulOp should not be null.");
Q
Qiao Longfei 已提交
41 42 43

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
44

Q
Qiao Longfei 已提交
45 46
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
47

M
minqiyang 已提交
48 49 50
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
51

52
    PADDLE_ENFORCE_NE(framework::product(y_dims), 0,
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
                      platform::errors::PreconditionNotMet(
                          "Maybe the Input variable Y(%s) has not "
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function.",
                          ctx->Inputs("Y").front()));
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        platform::errors::InvalidArgument(
            "The input tensor X's dimensions of MulOp "
            "should be larger than x_num_col_dims. But received X's "
            "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
            x_dims.size(), x_dims, x_num_col_dims));
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        platform::errors::InvalidArgument(
            "The input tensor Y's dimensions of MulOp "
            "should be larger than y_num_col_dims. But received Y's "
            "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
            y_dims.size(), y_dims, y_num_col_dims));
73

F
fengjiayi 已提交
74 75
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
76

77 78
    PADDLE_ENFORCE_EQ(
        x_mat_dims[1], y_mat_dims[0],
79 80 81 82 83 84 85 86 87
        platform::errors::InvalidArgument(
            "After flatten the input tensor X and Y to 2-D dimensions "
            "matrix X1 and Y1, the matrix X1's width must be equal with matrix "
            "Y1's height. But received X's shape = [%s], X1's shape = [%s], "
            "X1's "
            "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
            "%s.",
            x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims,
            y_mat_dims[0]));
Y
Yu Yang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
101
    ctx->ShareLoD("X", /*->*/ "Out");
102
  }
P
Physher 已提交
103 104 105 106 107 108 109

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
110
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
111 112 113 114 115 116
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

117 118
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
119 120 121 122 123 124 125 126
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
127 128
};

D
dongzhihong 已提交
129
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
130
 public:
Y
Yu Yang 已提交
131
  void Make() override {
C
caoying03 已提交
132 133 134
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
135 136 137
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
F
WIP  
fengjiayi 已提交
138
    AddAttr<int>(
F
fengjiayi 已提交
139
        "x_num_col_dims",
C
caoying03 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
155
        )DOC")
F
WIP  
fengjiayi 已提交
156
        .SetDefault(1)
F
fengjiayi 已提交
157
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
158
    AddAttr<int>(
F
fengjiayi 已提交
159
        "y_num_col_dims",
C
caoying03 已提交
160 161 162 163
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
164
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
165
        )DOC")
F
WIP  
fengjiayi 已提交
166
        .SetDefault(1)
F
fengjiayi 已提交
167
        .EqualGreaterThan(1);
168 169 170 171 172
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
173
        .SetDefault(1.0f);
174 175 176 177 178
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
179 180 181 182 183 184 185 186 187 188
        .SetDefault({1.0f});
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
        .SetDefault(1.0f);
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
        .SetDefault(false);
189
    AddComment(R"DOC(
C
caoying03 已提交
190
Mul Operator.
K
kexinzhao 已提交
191

C
caoying03 已提交
192
This operator is used to perform matrix multiplication for input $X$ and $Y$.
193

194 195
The equation is:

C
caoying03 已提交
196
$$Out = X * Y$$
197

C
caoying03 已提交
198 199
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
200

201 202 203 204
)DOC");
  }
};

C
chengduo 已提交
205 206 207 208 209 210 211 212
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

213
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
214 215 216
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

217
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
218 219 220 221 222 223
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
224

Q
Qiao Longfei 已提交
225 226 227 228 229 230 231 232 233
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
234 235 236
  }
};

H
hong 已提交
237 238
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
239
 public:
H
hong 已提交
240
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
241 242

 protected:
H
hong 已提交
243 244
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> retv(new T());
S
sneaxiy 已提交
245
    retv->SetType("mul_grad");
H
hong 已提交
246 247 248 249 250 251
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
252 253 254 255
    return retv;
  }
};

256 257 258 259 260 261 262 263 264
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null");

L
lvmengsi 已提交
265 266
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
267 268 269
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
270 271
      ctx->ShareDim("X", "DX");
    }
272
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
273 274 275 276 277
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
278 279
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
280
 public:
H
hong 已提交
281
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
282 283

 protected:
H
hong 已提交
284 285
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> retv(new T());
286 287
    retv->SetType("mul_grad_grad");

H
hong 已提交
288 289 290 291 292
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
293

H
hong 已提交
294 295
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
296

L
lvmengsi 已提交
297
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
298
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
299
    }
H
hong 已提交
300 301
    retv->SetOutput("DX", ddw.empty() ? this->Empty() : this->InputGrad("X"));
    retv->SetOutput("DY", ddx.empty() ? this->Empty() : this->InputGrad("Y"));
302

H
hong 已提交
303
    retv->SetAttrMap(this->Attrs());
304 305 306 307
    return retv;
  }
};

308 309 310
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
311
namespace ops = paddle::operators;
C
chengduo 已提交
312
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
H
hong 已提交
313 314
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MulOpGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
315

H
hong 已提交
316 317 318
REGISTER_OPERATOR(mul_grad, ops::MulGradOp,
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
319

320
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
P
Physher 已提交
321

Q
QI JUN 已提交
322
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
323 324
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
325

Q
QI JUN 已提交
326
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
327 328
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
329

330 331 332 333
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);