mul_op.cc 12.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33 34
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
35 36 37 38 39 40 41
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MulOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
42

Q
Qiao Longfei 已提交
43 44
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
45

M
minqiyang 已提交
46 47 48
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
49

50 51 52 53 54 55 56 57 58 59
    PADDLE_ENFORCE_GT(x_dims.size(), x_num_col_dims,
                      "ShapeError: The input tensor X's dimensions of MulOp "
                      "should be larger than x_num_col_dims. But received X's "
                      "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
                      x_dims.size(), x_dims, x_num_col_dims);
    PADDLE_ENFORCE_GT(y_dims.size(), y_num_col_dims,
                      "ShapeError: The input tensor Y's dimensions of MulOp "
                      "should be larger than y_num_col_dims. But received Y's "
                      "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
                      y_dims.size(), y_dims, y_num_col_dims);
60

F
fengjiayi 已提交
61 62
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
63

64 65 66 67 68 69 70
    PADDLE_ENFORCE_EQ(
        x_mat_dims[1], y_mat_dims[0],
        "ShapeError: After flatten the input tensor X and Y to 2-D dimensions "
        "matrix X1 and Y1, the matrix X1's width must be equal with matrix "
        "Y1's height. But received X's shape = [%s], X1's shape = [%s], X1's "
        "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = %s.",
        x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims, y_mat_dims[0]);
Y
Yu Yang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
84
    ctx->ShareLoD("X", /*->*/ "Out");
85
  }
P
Physher 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = ctx.Input<Tensor>("X")->type();
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

100 101
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
102 103 104 105 106 107 108 109
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
110 111
};

D
dongzhihong 已提交
112
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
113
 public:
Y
Yu Yang 已提交
114
  void Make() override {
C
caoying03 已提交
115 116 117
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
118 119 120
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
F
WIP  
fengjiayi 已提交
121
    AddAttr<int>(
F
fengjiayi 已提交
122
        "x_num_col_dims",
C
caoying03 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
138
        )DOC")
F
WIP  
fengjiayi 已提交
139
        .SetDefault(1)
F
fengjiayi 已提交
140
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
141
    AddAttr<int>(
F
fengjiayi 已提交
142
        "y_num_col_dims",
C
caoying03 已提交
143 144 145 146
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
147
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
148
        )DOC")
F
WIP  
fengjiayi 已提交
149
        .SetDefault(1)
F
fengjiayi 已提交
150
        .EqualGreaterThan(1);
151 152 153 154 155
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
156
        .SetDefault(1.0f);
157 158 159 160 161
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
162 163 164 165 166 167 168 169 170 171
        .SetDefault({1.0f});
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
        .SetDefault(1.0f);
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
        .SetDefault(false);
172
    AddComment(R"DOC(
C
caoying03 已提交
173
Mul Operator.
K
kexinzhao 已提交
174

C
caoying03 已提交
175
This operator is used to perform matrix multiplication for input $X$ and $Y$.
176

177 178
The equation is:

C
caoying03 已提交
179
$$Out = X * Y$$
180

C
caoying03 已提交
181 182
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
183

184 185 186 187
)DOC");
  }
};

C
chengduo 已提交
188 189 190 191 192 193 194 195
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

196
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
197 198 199
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

200
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
201 202 203 204 205 206
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
207

Q
Qiao Longfei 已提交
208 209 210 211 212 213 214 215 216
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
217 218 219
  }
};

S
sneaxiy 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
class MulOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad");
    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    retv->SetAttrMap(Attrs());
    return retv;
  }
};

238 239 240 241 242 243 244 245 246
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null");

247 248 249 250
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
251 252
      ctx->ShareDim("X", "DX");
    }
253
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      ctx->ShareDim("Y", "DY");
    }
  }
};

class MulDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad_grad");

    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput("DOut", Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", OutputGrad(framework::GradVarName("Y")));

274 275 276 277 278 279 280 281 282
    auto ddx = OutputGrad(framework::GradVarName("X"));
    auto ddw = OutputGrad(framework::GradVarName("Y"));
    std::vector<std::string> empty_str = {};

    retv->SetOutput("DDOut", (ddx.empty())
                                 ? empty_str
                                 : InputGrad(framework::GradVarName("Out")));
    retv->SetOutput("DX", ddw.empty() ? empty_str : InputGrad("X"));
    retv->SetOutput("DY", ddx.empty() ? empty_str : InputGrad("Y"));
283 284 285 286 287 288

    retv->SetAttrMap(Attrs());
    return retv;
  }
};

289 290 291
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
292
namespace ops = paddle::operators;
C
chengduo 已提交
293 294
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
                  ops::MulOpGradMaker);
P
Physher 已提交
295

296
REGISTER_OPERATOR(mul_grad, ops::MulGradOp, ops::MulDoubleGradMaker);
P
Physher 已提交
297

298
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
P
Physher 已提交
299

Q
QI JUN 已提交
300
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
301 302
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
303

Q
QI JUN 已提交
304
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
305 306
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
307

308 309 310 311
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);