roi_align_kernel.cu 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/roi_align_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/kernel_registry.h"

#include "paddle/fluid/memory/memory.h"

namespace phi {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;
static constexpr int kROISize = 4;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
__device__ T BilinearInterpolate(
    const T* input_data, const int height, const int width, T y, T x) {
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return 0;
  }
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }
  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }
  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  T v1 = input_data[y_low * width + x_low];
  T v2 = input_data[y_low * width + x_high];
  T v3 = input_data[y_high * width + x_low];
  T v4 = input_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <class T>
73
__global__ void GPURoiAlignForward(const int nthreads,
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
                                   const T* input_data,
                                   const T* input_rois,
                                   const float spatial_scale,
                                   const int channels,
                                   const int height,
                                   const int width,
                                   const int pooled_height,
                                   const int pooled_width,
                                   const int sampling_ratio,
                                   int* roi_batch_id_data,
                                   T* output_data,
                                   const bool continuous_coordinate) {
  CUDA_KERNEL_LOOP(i, nthreads) {
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_offset = continuous_coordinate ? static_cast<T>(0.5) : 0;
    T roi_xmin = offset_input_rois[0] * spatial_scale - roi_offset;
    T roi_ymin = offset_input_rois[1] * spatial_scale - roi_offset;
    T roi_xmax = offset_input_rois[2] * spatial_scale - roi_offset;
    T roi_ymax = offset_input_rois[3] * spatial_scale - roi_offset;

    T roi_width = roi_xmax - roi_xmin;
    T roi_height = roi_ymax - roi_ymin;
    if (!continuous_coordinate) {
      roi_width = max(roi_width, static_cast<T>(1.));
      roi_height = max(roi_height, static_cast<T>(1.));
    }

    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1);
    T output_val = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_ymin + ph * bin_size_h +
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_xmin + pw * bin_size_w +
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
        T val = BilinearInterpolate(offset_input_data, height, width, y, x);
        output_val += val;
      }
    }
    output_val /= count;
    output_data[i] = output_val;
  }
}

template <typename T, typename Context>
139
void RoiAlignKernel(const Context& dev_ctx,
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                    const DenseTensor& x,
                    const DenseTensor& boxes,
                    paddle::optional<const DenseTensor&> boxes_num,
                    int pooled_height,
                    int pooled_width,
                    float spatial_scale,
                    int sampling_ratio,
                    bool aligned,
                    DenseTensor* out) {
  auto in_dims = x.dims();
  int batch_size = in_dims[0];
  int channels = in_dims[1];
  int height = in_dims[2];
  int width = in_dims[3];

  int rois_num = boxes.dims()[0];

  if (rois_num == 0) return;

  int output_size = out->numel();
  int blocks = NumBlocks(output_size);
  int threads = kNumCUDAThreads;
#ifdef WITH_NV_JETSON
  backends::gpu::ChangeThreadNum(dev_ctx, &threads, 256);
#endif
  DenseTensor roi_batch_id_list;
  roi_batch_id_list.Resize({rois_num});
  int* roi_batch_id_data = dev_ctx.template HostAlloc<int>(&roi_batch_id_list);
  auto cplace = phi::CPUPlace();
  auto gplace = dev_ctx.GetPlace();
  if (boxes_num) {
    int boxes_batch_size = boxes_num->numel();
    PADDLE_ENFORCE_EQ(
        boxes_batch_size,
        batch_size,
        errors::InvalidArgument(
            "The boxes_batch_size and imgs "
            "batch_size must be the same. But received boxes_batch_size = %d, "
            "batch_size = %d",
            boxes_batch_size,
            batch_size));

    std::vector<int> boxes_num_list(boxes_batch_size);
    paddle::memory::Copy(cplace,
                         boxes_num_list.data(),
                         gplace,
                         boxes_num->data<int>(),
                         sizeof(int) * boxes_batch_size,
                         0);
    int start = 0;
    for (int n = 0; n < boxes_batch_size; ++n) {
      for (int i = start; i < start + boxes_num_list[n]; ++i) {
        roi_batch_id_data[i] = n;
      }
      start += boxes_num_list[n];
    }
  } else {
    auto lod = boxes.lod();
    PADDLE_ENFORCE_EQ(lod.empty(),
                      false,
                      errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
                                              "not contain LoD information."));
    auto boxes_lod = lod.back();
    int boxes_batch_size = boxes_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        boxes_batch_size,
        batch_size,
        errors::InvalidArgument(
            "The batch size of rois and batch size "
            "of images must be the same. But received rois batch size = %d, "
            "and images batch size = %d",
            boxes_batch_size,
            batch_size));
    int boxes_num_with_lod = boxes_lod[boxes_batch_size];
    PADDLE_ENFORCE_EQ(
        rois_num,
        boxes_num_with_lod,
        errors::InvalidArgument(
            "The actual number of rois and the number of rois "
            "provided from Input(RoIsLoD) in RoIAlign must be the same."
            " But received actual number of rois is %d, and the number "
            "of rois from RoIsLoD is %d",
            rois_num,
            boxes_num_with_lod));
    for (int n = 0; n < boxes_batch_size; ++n) {
      for (size_t i = boxes_lod[n]; i < boxes_lod[n + 1]; ++i) {
        roi_batch_id_data[i] = n;
      }
    }
  }
  int bytes = roi_batch_id_list.numel() * sizeof(int);
  auto roi_ptr = paddle::memory::Alloc(dev_ctx, bytes);
  int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
  paddle::memory::Copy(
      gplace, roi_id_data, cplace, roi_batch_id_data, bytes, dev_ctx.stream());
235
  GPURoiAlignForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
      output_size,
      x.data<T>(),
      boxes.data<T>(),
      spatial_scale,
      channels,
      height,
      width,
      pooled_height,
      pooled_width,
      sampling_ratio,
      roi_id_data,
      dev_ctx.template Alloc<T>(out),
      aligned);
}

}  // namespace phi

PD_REGISTER_KERNEL(
254
    roi_align, GPU, ALL_LAYOUT, phi::RoiAlignKernel, float, double) {}