Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
39de9b8a
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
39de9b8a
编写于
3月 12, 2022
作者:
Z
zyfncg
提交者:
GitHub
3月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI] Move forward kernel of roi_align into phi (#40382)
* move roi_align kernel to phi * fix bug of roi_align xpu
上级
573ca984
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
646 addition
and
477 deletion
+646
-477
paddle/fluid/operators/roi_align_op.cc
paddle/fluid/operators/roi_align_op.cc
+1
-5
paddle/fluid/operators/roi_align_op.cu
paddle/fluid/operators/roi_align_op.cu
+0
-199
paddle/fluid/operators/roi_align_op.h
paddle/fluid/operators/roi_align_op.h
+0
-269
paddle/fluid/operators/roi_align_op_npu.cc
paddle/fluid/operators/roi_align_op_npu.cc
+1
-1
paddle/fluid/operators/roi_align_op_xpu.cc
paddle/fluid/operators/roi_align_op_xpu.cc
+4
-1
paddle/phi/kernels/cpu/roi_align_kernel.cc
paddle/phi/kernels/cpu/roi_align_kernel.cc
+318
-0
paddle/phi/kernels/gpu/roi_align_kernel.cu
paddle/phi/kernels/gpu/roi_align_kernel.cu
+255
-0
paddle/phi/kernels/gpu/scale_kernel.cu
paddle/phi/kernels/gpu/scale_kernel.cu
+1
-2
paddle/phi/kernels/roi_align_kernel.h
paddle/phi/kernels/roi_align_kernel.h
+34
-0
paddle/phi/ops/compat/roi_align_sig.cc
paddle/phi/ops/compat/roi_align_sig.cc
+32
-0
未找到文件。
paddle/fluid/operators/roi_align_op.cc
浏览文件 @
39de9b8a
...
...
@@ -226,11 +226,7 @@ REGISTER_OPERATOR(roi_align, ops::ROIAlignOp, ops::ROIAlignOpMaker,
ops
::
ROIAlignGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
roi_align_grad
,
ops
::
ROIAlignGradOp
,
ops
::
RoiAlignGradNoNeedBufVarsInferer
);
REGISTER_OP_CPU_KERNEL
(
roi_align
,
ops
::
CPUROIAlignOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUROIAlignOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
CPUROIAlignOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
);
REGISTER_OP_CPU_KERNEL
(
roi_align_grad
,
ops
::
CPUROIAlignGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
...
...
paddle/fluid/operators/roi_align_op.cu
浏览文件 @
39de9b8a
...
...
@@ -33,43 +33,6 @@ static inline int NumBlocks(const int N) {
kNumMaxinumNumBlocks
);
}
template
<
class
T
>
__device__
T
BilinearInterpolate
(
const
T
*
input_data
,
const
int
height
,
const
int
width
,
T
y
,
T
x
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
return
0
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
int
y_low
=
static_cast
<
int
>
(
y
);
int
x_low
=
static_cast
<
int
>
(
x
);
int
y_high
;
int
x_high
;
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
T
v1
=
input_data
[
y_low
*
width
+
x_low
];
T
v2
=
input_data
[
y_low
*
width
+
x_high
];
T
v3
=
input_data
[
y_high
*
width
+
x_low
];
T
v4
=
input_data
[
y_high
*
width
+
x_high
];
T
w1
=
hy
*
hx
,
w2
=
hy
*
lx
,
w3
=
ly
*
hx
,
w4
=
ly
*
lx
;
T
val
=
(
w1
*
v1
+
w2
*
v2
+
w3
*
v3
+
w4
*
v4
);
return
val
;
}
template
<
class
T
>
__device__
void
BilinearInterpolateGradient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
T
*
w1
,
T
*
w2
,
T
*
w3
,
...
...
@@ -102,65 +65,6 @@ __device__ void BilinearInterpolateGradient(const int height, const int width,
return
;
}
template
<
class
T
>
__global__
void
GPUROIAlignForward
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
sampling_ratio
,
int
*
roi_batch_id_data
,
T
*
output_data
,
const
bool
continuous_coordinate
)
{
CUDA_KERNEL_LOOP
(
i
,
nthreads
)
{
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
T
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
T
roi_offset
=
continuous_coordinate
?
static_cast
<
T
>
(
0.5
)
:
0
;
T
roi_xmin
=
offset_input_rois
[
0
]
*
spatial_scale
-
roi_offset
;
T
roi_ymin
=
offset_input_rois
[
1
]
*
spatial_scale
-
roi_offset
;
T
roi_xmax
=
offset_input_rois
[
2
]
*
spatial_scale
-
roi_offset
;
T
roi_ymax
=
offset_input_rois
[
3
]
*
spatial_scale
-
roi_offset
;
T
roi_width
=
roi_xmax
-
roi_xmin
;
T
roi_height
=
roi_ymax
-
roi_ymin
;
if
(
!
continuous_coordinate
)
{
roi_width
=
max
(
roi_width
,
static_cast
<
T
>
(
1.
));
roi_height
=
max
(
roi_height
,
static_cast
<
T
>
(
1.
));
}
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
const
T
*
offset_input_data
=
input_data
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
const
T
count
=
max
(
roi_bin_grid_h
*
roi_bin_grid_w
,
1
);
T
output_val
=
0
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
T
val
=
BilinearInterpolate
(
offset_input_data
,
height
,
width
,
y
,
x
);
output_val
+=
val
;
}
}
output_val
/=
count
;
output_data
[
i
]
=
output_val
;
}
}
template
<
typename
T
>
__global__
void
GPUROIAlignBackward
(
const
int
nthreads
,
const
T
*
input_rois
,
const
T
*
out_grad
,
...
...
@@ -236,105 +140,6 @@ __global__ void GPUROIAlignBackward(
}
}
template
<
typename
Place
,
typename
T
>
class
GPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
aligned
=
ctx
.
Attr
<
bool
>
(
"aligned"
);
auto
in_dims
=
in
->
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
if
(
rois_num
==
0
)
return
;
int
output_size
=
out
->
numel
();
int
blocks
=
NumBlocks
(
output_size
);
int
threads
=
kNumCUDAThreads
;
#ifdef WITH_NV_JETSON
platform
::
ChangeThreadNum
(
ctx
.
cuda_device_context
(),
&
threads
,
256
);
#endif
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
auto
cplace
=
platform
::
CPUPlace
();
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
cplace
);
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
auto
gplace
=
ctx
.
GetPlace
();
if
(
ctx
.
HasInput
(
"RoisNum"
))
{
auto
*
rois_num_t
=
ctx
.
Input
<
Tensor
>
(
"RoisNum"
);
int
rois_batch_size
=
rois_num_t
->
numel
();
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
platform
::
errors
::
InvalidArgument
(
"The rois_batch_size and imgs "
"batch_size must be the same. But received rois_batch_size = %d, "
"batch_size = %d"
,
rois_batch_size
,
batch_size
));
std
::
vector
<
int
>
rois_num_list
(
rois_batch_size
);
memory
::
Copy
(
cplace
,
rois_num_list
.
data
(),
gplace
,
rois_num_t
->
data
<
int
>
(),
sizeof
(
int
)
*
rois_batch_size
,
0
);
int
start
=
0
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
int
i
=
start
;
i
<
start
+
rois_num_list
[
n
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
start
+=
rois_num_list
[
n
];
}
}
else
{
auto
lod
=
rois
->
lod
();
PADDLE_ENFORCE_EQ
(
lod
.
empty
(),
false
,
platform
::
errors
::
InvalidArgument
(
"Input(ROIs) in ROIAlignOp does "
"not contain LoD information."
));
auto
rois_lod
=
lod
.
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
platform
::
errors
::
InvalidArgument
(
"The batch size of rois and batch size "
"of images must be the same. But received rois batch size = %d, "
"and images batch size = %d"
,
rois_batch_size
,
batch_size
));
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
platform
::
errors
::
InvalidArgument
(
"The actual number of rois and the number of rois "
"provided from Input(RoIsLoD) in RoIAlign must be the same."
" But received actual number of rois is %d, and the number "
"of rois from RoIsLoD is %d"
,
rois_num
,
rois_num_with_lod
));
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
}
int
bytes
=
roi_batch_id_list
.
numel
()
*
sizeof
(
int
);
auto
roi_ptr
=
memory
::
Alloc
(
dev_ctx
,
bytes
);
int
*
roi_id_data
=
reinterpret_cast
<
int
*>
(
roi_ptr
->
ptr
());
memory
::
Copy
(
gplace
,
roi_id_data
,
cplace
,
roi_batch_id_data
,
bytes
,
dev_ctx
.
stream
());
GPUROIAlignForward
<
T
><<<
blocks
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
output_size
,
in
->
data
<
T
>
(),
rois
->
data
<
T
>
(),
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_id_data
,
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
aligned
);
}
};
template
<
typename
Place
,
typename
T
>
class
GPUROIAlignGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -416,10 +221,6 @@ class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
roi_align
,
ops
::
GPUROIAlignOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GPUROIAlignOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
roi_align_grad
,
ops
::
GPUROIAlignGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
...
...
paddle/fluid/operators/roi_align_op.h
浏览文件 @
39de9b8a
...
...
@@ -23,152 +23,6 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
namespace
{
// NOLINT
constexpr
size_t
get_offset
(
size_t
x
,
size_t
y
,
size_t
width
)
{
return
y
*
width
+
x
;
}
template
<
class
T
>
struct
offsets_and_ratios
{
offsets_and_ratios
()
=
default
;
offsets_and_ratios
(
std
::
size_t
xy
,
std
::
size_t
xY
,
std
::
size_t
Xy
,
std
::
size_t
XY
,
T
xy_ratio
,
T
xY_ratio
,
T
Xy_ratio
,
T
XY_ratio
)
:
xy
(
xy
),
xY
(
xY
),
Xy
(
Xy
),
XY
(
XY
),
xy_ratio
(
xy_ratio
),
xY_ratio
(
xY_ratio
),
Xy_ratio
(
Xy_ratio
),
XY_ratio
(
XY_ratio
)
{}
std
::
size_t
xy
=
0
;
std
::
size_t
xY
=
0
;
std
::
size_t
Xy
=
0
;
std
::
size_t
XY
=
0
;
T
xy_ratio
=
0.0
f
;
T
xY_ratio
=
0.0
f
;
T
Xy_ratio
=
0.0
f
;
T
XY_ratio
=
0.0
f
;
};
template
<
typename
T
>
std
::
vector
<
offsets_and_ratios
<
T
>>
get_indexes_and_ratios
(
std
::
size_t
width
,
std
::
size_t
height
,
const
T
roi_width
,
const
T
roi_height
,
const
T
roi_xmin
,
const
T
roi_ymin
,
std
::
size_t
pooled_width
,
std
::
size_t
roi_bin_grid_w
,
std
::
size_t
pooled_height
,
std
::
size_t
roi_bin_grid_h
)
{
const
auto
ind_num
=
pooled_width
*
roi_bin_grid_w
*
pooled_height
*
roi_bin_grid_h
;
std
::
vector
<
offsets_and_ratios
<
T
>>
interpolation_cords
;
interpolation_cords
.
reserve
(
ind_num
);
const
auto
bin_w
=
roi_width
/
pooled_width
;
const
auto
bin_h
=
roi_height
/
pooled_height
;
for
(
std
::
size_t
py
=
0
;
py
<
pooled_height
;
py
++
)
{
for
(
std
::
size_t
px
=
0
;
px
<
pooled_width
;
px
++
)
{
for
(
std
::
size_t
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
// calculate x of sample points
auto
y
=
roi_ymin
+
bin_h
*
(
py
+
static_cast
<
T
>
(
iy
+
.5
f
)
/
static_cast
<
T
>
(
roi_bin_grid_h
));
for
(
std
::
size_t
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
// calculate x of sample points
auto
x
=
roi_xmin
+
bin_w
*
(
px
+
static_cast
<
T
>
(
ix
+
.5
f
)
/
static_cast
<
T
>
(
roi_bin_grid_w
));
// deal with elements out of map
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
interpolation_cords
.
emplace_back
();
continue
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
std
::
size_t
x_low_index
=
static_cast
<
std
::
size_t
>
(
x
);
std
::
size_t
x_high_index
;
if
(
x_low_index
>=
width
-
1
)
{
x_high_index
=
x_low_index
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low_index
);
}
else
{
x_high_index
=
x_low_index
+
1
;
}
T
x_ratio
=
x_high_index
-
x
;
std
::
size_t
y_low_index
=
static_cast
<
std
::
size_t
>
(
y
);
std
::
size_t
y_high_index
;
if
(
y_low_index
>=
height
-
1
)
{
y_high_index
=
y_low_index
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low_index
);
}
else
{
y_high_index
=
y_low_index
+
1
;
}
T
y_ratio
=
y_high_index
-
y
;
auto
xy
=
get_offset
(
x_low_index
,
y_low_index
,
width
);
auto
xY
=
get_offset
(
x_low_index
,
y_high_index
,
width
);
auto
Xy
=
get_offset
(
x_high_index
,
y_low_index
,
width
);
auto
XY
=
get_offset
(
x_high_index
,
y_high_index
,
width
);
auto
xy_ratio
=
x_ratio
*
y_ratio
;
auto
xY_ratio
=
x_ratio
*
(
1
-
y_ratio
);
auto
Xy_ratio
=
(
1
-
x_ratio
)
*
y_ratio
;
auto
XY_ratio
=
(
1
-
x_ratio
)
*
(
1
-
y_ratio
);
interpolation_cords
.
emplace_back
(
xy
,
xY
,
Xy
,
XY
,
xy_ratio
,
xY_ratio
,
Xy_ratio
,
XY_ratio
);
}
}
}
}
return
interpolation_cords
;
}
// namespace
template
<
typename
T
>
void
interpolate
(
std
::
vector
<
T
>&
interpolated_values
,
// NOLINT
const
std
::
vector
<
offsets_and_ratios
<
T
>>&
interpolation_cords
,
const
T
*
data
)
{
for
(
auto
&
ic
:
interpolation_cords
)
{
auto
xlyl_offset
=
ic
.
xy
;
auto
xhyl_offset
=
ic
.
Xy
;
auto
xlyh_offset
=
ic
.
xY
;
auto
xhyh_offset
=
ic
.
XY
;
auto
xlyl_ratio
=
ic
.
xy_ratio
;
auto
xhyl_ratio
=
ic
.
Xy_ratio
;
auto
xlyh_ratio
=
ic
.
xY_ratio
;
auto
xhyh_ratio
=
ic
.
XY_ratio
;
interpolated_values
.
emplace_back
(
xlyl_ratio
*
data
[
xlyl_offset
]
+
xhyl_ratio
*
data
[
xhyl_offset
]
+
xlyh_ratio
*
data
[
xlyh_offset
]
+
xhyh_ratio
*
data
[
xhyh_offset
]);
}
}
template
<
typename
T
>
void
avg_pool
(
const
std
::
vector
<
T
>&
interpolated_values
,
T
*
output_data
,
int
roi_bin_grid_w
,
int
roi_bin_grid_h
,
int
pooled_width
,
int
pooled_height
)
{
const
auto
data_amount
=
pooled_width
*
pooled_height
;
const
auto
grid_points
=
roi_bin_grid_w
*
roi_bin_grid_h
;
const
T
count
=
1.0
/
grid_points
;
auto
val_begin
=
interpolated_values
.
cbegin
();
for
(
auto
i
=
0
;
i
<
data_amount
;
++
i
)
{
T
sum
=
0.0
;
auto
val_end
=
val_begin
+
grid_points
;
sum
=
std
::
accumulate
(
val_begin
,
val_end
,
sum
);
val_begin
=
val_end
;
output_data
[
i
]
=
sum
*
count
;
}
}
}
// NOLINT
template
<
class
T
>
void
bilinear_interpolate_gradient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
const
T
out_grad_this_bin
,
const
T
count
,
...
...
@@ -213,129 +67,6 @@ void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
CPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
aligned
=
ctx
.
Attr
<
bool
>
(
"aligned"
);
auto
in_dims
=
in
->
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
auto
in_stride
=
phi
::
stride
(
in_dims
);
auto
roi_stride
=
phi
::
stride
(
rois
->
dims
());
auto
out_stride
=
phi
::
stride
(
out
->
dims
());
const
T
*
input_data
=
in
->
data
<
T
>
();
framework
::
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
int
rois_batch_size
;
if
(
ctx
.
HasInput
(
"RoisNum"
))
{
auto
*
rois_num_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"RoisNum"
);
rois_batch_size
=
rois_num_t
->
numel
();
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
platform
::
errors
::
InvalidArgument
(
"The batch size of rois and the batch size of images "
" must be the same. But received the batch size of rois is %d, "
"and the batch size of images is %d"
,
rois_batch_size
,
batch_size
));
auto
*
rois_num_data
=
rois_num_t
->
data
<
int
>
();
int
start
=
0
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
int
i
=
start
;
i
<
start
+
rois_num_data
[
n
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
start
+=
rois_num_data
[
n
];
}
}
else
{
auto
lod
=
rois
->
lod
();
PADDLE_ENFORCE_EQ
(
lod
.
empty
(),
false
,
platform
::
errors
::
InvalidArgument
(
"Input(ROIs) Tensor of ROIAlignOp "
"does not contain LoD information."
));
auto
rois_lod
=
lod
.
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
platform
::
errors
::
InvalidArgument
(
"The rois_batch_size and imgs "
"batch_size must be the same. But received rois_batch_size = %d, "
"batch_size = %d"
,
rois_batch_size
,
batch_size
));
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
platform
::
errors
::
InvalidArgument
(
"The actual number of rois and the number of rois "
"provided from Input(RoIsLoD) in RoIAlign must be the same."
" But received actual number of rois is %d, and the number "
"of rois from RoIsLoD is %d"
,
rois_num
,
rois_num_with_lod
));
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
std
::
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
}
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
rois_data
=
rois
->
data
<
T
>
();
T
roi_offset
=
aligned
?
T
(
0.5
)
:
0
;
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_id
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
rois_data
[
0
]
*
spatial_scale
-
roi_offset
;
T
roi_ymin
=
rois_data
[
1
]
*
spatial_scale
-
roi_offset
;
T
roi_xmax
=
rois_data
[
2
]
*
spatial_scale
-
roi_offset
;
T
roi_ymax
=
rois_data
[
3
]
*
spatial_scale
-
roi_offset
;
T
roi_width
=
roi_xmax
-
roi_xmin
;
T
roi_height
=
roi_ymax
-
roi_ymin
;
if
(
!
aligned
)
{
roi_width
=
std
::
max
(
roi_width
,
static_cast
<
T
>
(
1.
));
roi_height
=
std
::
max
(
roi_height
,
static_cast
<
T
>
(
1.
));
}
const
T
*
batch_data
=
input_data
+
roi_batch_id
*
in_stride
[
0
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
auto
interpolation_cords
=
get_indexes_and_ratios
(
width
,
height
,
roi_width
,
roi_height
,
roi_xmin
,
roi_ymin
,
pooled_width
,
roi_bin_grid_w
,
pooled_height
,
roi_bin_grid_h
);
std
::
vector
<
T
>
interpolated_values
;
interpolated_values
.
reserve
(
interpolation_cords
.
size
());
for
(
auto
channel
=
0
;
channel
<
channels
;
++
channel
)
{
interpolate
(
interpolated_values
,
interpolation_cords
,
batch_data
);
avg_pool
(
interpolated_values
,
output_data
,
roi_bin_grid_w
,
roi_bin_grid_h
,
pooled_width
,
pooled_height
);
batch_data
+=
in_stride
[
1
];
output_data
+=
out_stride
[
1
];
interpolated_values
.
clear
();
}
rois_data
+=
roi_stride
[
0
];
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
CPUROIAlignGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
paddle/fluid/operators/roi_align_op_npu.cc
浏览文件 @
39de9b8a
...
...
@@ -9,7 +9,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/
operators/roi_align_op
.h"
#include "paddle/fluid/
framework/op_registry
.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
#include "paddle/phi/kernels/funcs/math_function.h"
...
...
paddle/fluid/operators/roi_align_op_xpu.cc
浏览文件 @
39de9b8a
...
...
@@ -13,13 +13,16 @@ See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/roi_align_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
XPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
paddle/phi/kernels/cpu/roi_align_kernel.cc
0 → 100644
浏览文件 @
39de9b8a
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/roi_align_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace
phi
{
constexpr
size_t
GetOffset
(
size_t
x
,
size_t
y
,
size_t
width
)
{
return
y
*
width
+
x
;
}
template
<
class
T
>
struct
OffsetsAndRatios
{
OffsetsAndRatios
()
=
default
;
OffsetsAndRatios
(
std
::
size_t
xy
,
std
::
size_t
xY
,
std
::
size_t
Xy
,
std
::
size_t
XY
,
T
xy_ratio
,
T
xY_ratio
,
T
Xy_ratio
,
T
XY_ratio
)
:
xy
(
xy
),
xY
(
xY
),
Xy
(
Xy
),
XY
(
XY
),
xy_ratio
(
xy_ratio
),
xY_ratio
(
xY_ratio
),
Xy_ratio
(
Xy_ratio
),
XY_ratio
(
XY_ratio
)
{}
std
::
size_t
xy
=
0
;
std
::
size_t
xY
=
0
;
std
::
size_t
Xy
=
0
;
std
::
size_t
XY
=
0
;
T
xy_ratio
=
0.0
f
;
T
xY_ratio
=
0.0
f
;
T
Xy_ratio
=
0.0
f
;
T
XY_ratio
=
0.0
f
;
};
template
<
typename
T
>
std
::
vector
<
OffsetsAndRatios
<
T
>>
GetIndexesAndRatios
(
std
::
size_t
width
,
std
::
size_t
height
,
const
T
roi_width
,
const
T
roi_height
,
const
T
roi_xmin
,
const
T
roi_ymin
,
std
::
size_t
pooled_width
,
std
::
size_t
roi_bin_grid_w
,
std
::
size_t
pooled_height
,
std
::
size_t
roi_bin_grid_h
)
{
const
auto
ind_num
=
pooled_width
*
roi_bin_grid_w
*
pooled_height
*
roi_bin_grid_h
;
std
::
vector
<
OffsetsAndRatios
<
T
>>
interpolation_cords
;
interpolation_cords
.
reserve
(
ind_num
);
const
auto
bin_w
=
roi_width
/
pooled_width
;
const
auto
bin_h
=
roi_height
/
pooled_height
;
for
(
std
::
size_t
py
=
0
;
py
<
pooled_height
;
py
++
)
{
for
(
std
::
size_t
px
=
0
;
px
<
pooled_width
;
px
++
)
{
for
(
std
::
size_t
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
// calculate x of sample points
auto
y
=
roi_ymin
+
bin_h
*
(
py
+
static_cast
<
T
>
(
iy
+
.5
f
)
/
static_cast
<
T
>
(
roi_bin_grid_h
));
for
(
std
::
size_t
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
// calculate x of sample points
auto
x
=
roi_xmin
+
bin_w
*
(
px
+
static_cast
<
T
>
(
ix
+
.5
f
)
/
static_cast
<
T
>
(
roi_bin_grid_w
));
// deal with elements out of map
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
interpolation_cords
.
emplace_back
();
continue
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
std
::
size_t
x_low_index
=
static_cast
<
std
::
size_t
>
(
x
);
std
::
size_t
x_high_index
;
if
(
x_low_index
>=
width
-
1
)
{
x_high_index
=
x_low_index
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low_index
);
}
else
{
x_high_index
=
x_low_index
+
1
;
}
T
x_ratio
=
x_high_index
-
x
;
std
::
size_t
y_low_index
=
static_cast
<
std
::
size_t
>
(
y
);
std
::
size_t
y_high_index
;
if
(
y_low_index
>=
height
-
1
)
{
y_high_index
=
y_low_index
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low_index
);
}
else
{
y_high_index
=
y_low_index
+
1
;
}
T
y_ratio
=
y_high_index
-
y
;
auto
xy
=
GetOffset
(
x_low_index
,
y_low_index
,
width
);
auto
xY
=
GetOffset
(
x_low_index
,
y_high_index
,
width
);
auto
Xy
=
GetOffset
(
x_high_index
,
y_low_index
,
width
);
auto
XY
=
GetOffset
(
x_high_index
,
y_high_index
,
width
);
auto
xy_ratio
=
x_ratio
*
y_ratio
;
auto
xY_ratio
=
x_ratio
*
(
1
-
y_ratio
);
auto
Xy_ratio
=
(
1
-
x_ratio
)
*
y_ratio
;
auto
XY_ratio
=
(
1
-
x_ratio
)
*
(
1
-
y_ratio
);
interpolation_cords
.
emplace_back
(
xy
,
xY
,
Xy
,
XY
,
xy_ratio
,
xY_ratio
,
Xy_ratio
,
XY_ratio
);
}
}
}
}
return
interpolation_cords
;
}
template
<
typename
T
>
void
Interpolate
(
std
::
vector
<
T
>&
interpolated_values
,
// NOLINT
const
std
::
vector
<
OffsetsAndRatios
<
T
>>&
interpolation_cords
,
const
T
*
data
)
{
for
(
auto
&
ic
:
interpolation_cords
)
{
auto
xlyl_offset
=
ic
.
xy
;
auto
xhyl_offset
=
ic
.
Xy
;
auto
xlyh_offset
=
ic
.
xY
;
auto
xhyh_offset
=
ic
.
XY
;
auto
xlyl_ratio
=
ic
.
xy_ratio
;
auto
xhyl_ratio
=
ic
.
Xy_ratio
;
auto
xlyh_ratio
=
ic
.
xY_ratio
;
auto
xhyh_ratio
=
ic
.
XY_ratio
;
interpolated_values
.
emplace_back
(
xlyl_ratio
*
data
[
xlyl_offset
]
+
xhyl_ratio
*
data
[
xhyl_offset
]
+
xlyh_ratio
*
data
[
xlyh_offset
]
+
xhyh_ratio
*
data
[
xhyh_offset
]);
}
}
template
<
typename
T
>
void
AvgPool
(
const
std
::
vector
<
T
>&
interpolated_values
,
T
*
output_data
,
int
roi_bin_grid_w
,
int
roi_bin_grid_h
,
int
pooled_width
,
int
pooled_height
)
{
const
auto
data_amount
=
pooled_width
*
pooled_height
;
const
auto
grid_points
=
roi_bin_grid_w
*
roi_bin_grid_h
;
const
T
count
=
1.0
/
grid_points
;
auto
val_begin
=
interpolated_values
.
cbegin
();
for
(
auto
i
=
0
;
i
<
data_amount
;
++
i
)
{
T
sum
=
0.0
;
auto
val_end
=
val_begin
+
grid_points
;
sum
=
std
::
accumulate
(
val_begin
,
val_end
,
sum
);
val_begin
=
val_end
;
output_data
[
i
]
=
sum
*
count
;
}
}
template
<
typename
T
,
typename
Context
>
void
ROIAlignKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
boxes
,
paddle
::
optional
<
const
DenseTensor
&>
boxes_num
,
int
pooled_height
,
int
pooled_width
,
float
spatial_scale
,
int
sampling_ratio
,
bool
aligned
,
DenseTensor
*
out
)
{
auto
in_dims
=
x
.
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
boxes
.
dims
()[
0
];
auto
in_stride
=
phi
::
stride
(
in_dims
);
auto
roi_stride
=
phi
::
stride
(
boxes
.
dims
());
auto
out_stride
=
phi
::
stride
(
out
->
dims
());
const
T
*
input_data
=
x
.
data
<
T
>
();
DenseTensor
roi_batch_id_list
=
Empty
<
int
>
(
dev_ctx
,
{
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
data
<
int
>
();
int
boxes_batch_size
;
if
(
boxes_num
)
{
boxes_batch_size
=
boxes_num
->
numel
();
PADDLE_ENFORCE_EQ
(
boxes_batch_size
,
batch_size
,
errors
::
InvalidArgument
(
"The batch size of rois and the batch size of images "
" must be the same. But received the batch size of rois is %d, "
"and the batch size of images is %d"
,
boxes_batch_size
,
batch_size
));
auto
*
boxes_num_data
=
boxes_num
->
data
<
int
>
();
int
start
=
0
;
for
(
int
n
=
0
;
n
<
boxes_batch_size
;
++
n
)
{
for
(
int
i
=
start
;
i
<
start
+
boxes_num_data
[
n
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
start
+=
boxes_num_data
[
n
];
}
}
else
{
auto
lod
=
boxes
.
lod
();
PADDLE_ENFORCE_EQ
(
lod
.
empty
(),
false
,
errors
::
InvalidArgument
(
"Input(ROIs) Tensor of ROIAlignOp "
"does not contain LoD information."
));
auto
boxes_lod
=
lod
.
back
();
int
boxes_batch_size
=
boxes_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
boxes_batch_size
,
batch_size
,
errors
::
InvalidArgument
(
"The boxes_batch_size and imgs "
"batch_size must be the same. But received boxes_batch_size = %d, "
"batch_size = %d"
,
boxes_batch_size
,
batch_size
));
int
boxes_num_with_lod
=
boxes_lod
[
boxes_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
boxes_num_with_lod
,
errors
::
InvalidArgument
(
"The actual number of rois and the number of rois "
"provided from Input(RoIsLoD) in RoIAlign must be the same."
" But received actual number of rois is %d, and the number "
"of rois from RoIsLoD is %d"
,
rois_num
,
boxes_num_with_lod
));
for
(
int
n
=
0
;
n
<
boxes_batch_size
;
++
n
)
{
for
(
std
::
size_t
i
=
boxes_lod
[
n
];
i
<
boxes_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
}
T
*
output_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
const
T
*
boxes_data
=
boxes
.
data
<
T
>
();
T
roi_offset
=
aligned
?
T
(
0.5
)
:
0
;
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_id
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
boxes_data
[
0
]
*
spatial_scale
-
roi_offset
;
T
roi_ymin
=
boxes_data
[
1
]
*
spatial_scale
-
roi_offset
;
T
roi_xmax
=
boxes_data
[
2
]
*
spatial_scale
-
roi_offset
;
T
roi_ymax
=
boxes_data
[
3
]
*
spatial_scale
-
roi_offset
;
T
roi_width
=
roi_xmax
-
roi_xmin
;
T
roi_height
=
roi_ymax
-
roi_ymin
;
if
(
!
aligned
)
{
roi_width
=
std
::
max
(
roi_width
,
static_cast
<
T
>
(
1.
));
roi_height
=
std
::
max
(
roi_height
,
static_cast
<
T
>
(
1.
));
}
const
T
*
batch_data
=
input_data
+
roi_batch_id
*
in_stride
[
0
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
auto
interpolation_cords
=
GetIndexesAndRatios
(
width
,
height
,
roi_width
,
roi_height
,
roi_xmin
,
roi_ymin
,
pooled_width
,
roi_bin_grid_w
,
pooled_height
,
roi_bin_grid_h
);
std
::
vector
<
T
>
interpolated_values
;
interpolated_values
.
reserve
(
interpolation_cords
.
size
());
for
(
auto
channel
=
0
;
channel
<
channels
;
++
channel
)
{
Interpolate
(
interpolated_values
,
interpolation_cords
,
batch_data
);
AvgPool
(
interpolated_values
,
output_data
,
roi_bin_grid_w
,
roi_bin_grid_h
,
pooled_width
,
pooled_height
);
batch_data
+=
in_stride
[
1
];
output_data
+=
out_stride
[
1
];
interpolated_values
.
clear
();
}
boxes_data
+=
roi_stride
[
0
];
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
roi_align
,
CPU
,
ALL_LAYOUT
,
phi
::
ROIAlignKernel
,
float
,
double
,
int
)
{}
paddle/phi/kernels/gpu/roi_align_kernel.cu
0 → 100644
浏览文件 @
39de9b8a
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/roi_align_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/fluid/memory/memory.h"
namespace
phi
{
static
constexpr
int
kNumCUDAThreads
=
512
;
static
constexpr
int
kNumMaxinumNumBlocks
=
4096
;
static
constexpr
int
kROISize
=
4
;
static
inline
int
NumBlocks
(
const
int
N
)
{
return
std
::
min
((
N
+
kNumCUDAThreads
-
1
)
/
kNumCUDAThreads
,
kNumMaxinumNumBlocks
);
}
template
<
class
T
>
__device__
T
BilinearInterpolate
(
const
T
*
input_data
,
const
int
height
,
const
int
width
,
T
y
,
T
x
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
return
0
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
int
y_low
=
static_cast
<
int
>
(
y
);
int
x_low
=
static_cast
<
int
>
(
x
);
int
y_high
;
int
x_high
;
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
T
v1
=
input_data
[
y_low
*
width
+
x_low
];
T
v2
=
input_data
[
y_low
*
width
+
x_high
];
T
v3
=
input_data
[
y_high
*
width
+
x_low
];
T
v4
=
input_data
[
y_high
*
width
+
x_high
];
T
w1
=
hy
*
hx
,
w2
=
hy
*
lx
,
w3
=
ly
*
hx
,
w4
=
ly
*
lx
;
T
val
=
(
w1
*
v1
+
w2
*
v2
+
w3
*
v3
+
w4
*
v4
);
return
val
;
}
template
<
class
T
>
__global__
void
GPUROIAlignForward
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
sampling_ratio
,
int
*
roi_batch_id_data
,
T
*
output_data
,
const
bool
continuous_coordinate
)
{
CUDA_KERNEL_LOOP
(
i
,
nthreads
)
{
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
T
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
T
roi_offset
=
continuous_coordinate
?
static_cast
<
T
>
(
0.5
)
:
0
;
T
roi_xmin
=
offset_input_rois
[
0
]
*
spatial_scale
-
roi_offset
;
T
roi_ymin
=
offset_input_rois
[
1
]
*
spatial_scale
-
roi_offset
;
T
roi_xmax
=
offset_input_rois
[
2
]
*
spatial_scale
-
roi_offset
;
T
roi_ymax
=
offset_input_rois
[
3
]
*
spatial_scale
-
roi_offset
;
T
roi_width
=
roi_xmax
-
roi_xmin
;
T
roi_height
=
roi_ymax
-
roi_ymin
;
if
(
!
continuous_coordinate
)
{
roi_width
=
max
(
roi_width
,
static_cast
<
T
>
(
1.
));
roi_height
=
max
(
roi_height
,
static_cast
<
T
>
(
1.
));
}
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
const
T
*
offset_input_data
=
input_data
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
const
T
count
=
max
(
roi_bin_grid_h
*
roi_bin_grid_w
,
1
);
T
output_val
=
0
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
T
val
=
BilinearInterpolate
(
offset_input_data
,
height
,
width
,
y
,
x
);
output_val
+=
val
;
}
}
output_val
/=
count
;
output_data
[
i
]
=
output_val
;
}
}
template
<
typename
T
,
typename
Context
>
void
ROIAlignKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
boxes
,
paddle
::
optional
<
const
DenseTensor
&>
boxes_num
,
int
pooled_height
,
int
pooled_width
,
float
spatial_scale
,
int
sampling_ratio
,
bool
aligned
,
DenseTensor
*
out
)
{
auto
in_dims
=
x
.
dims
();
int
batch_size
=
in_dims
[
0
];
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
boxes
.
dims
()[
0
];
if
(
rois_num
==
0
)
return
;
int
output_size
=
out
->
numel
();
int
blocks
=
NumBlocks
(
output_size
);
int
threads
=
kNumCUDAThreads
;
#ifdef WITH_NV_JETSON
backends
::
gpu
::
ChangeThreadNum
(
dev_ctx
,
&
threads
,
256
);
#endif
DenseTensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
dev_ctx
.
template
HostAlloc
<
int
>(
&
roi_batch_id_list
);
auto
cplace
=
phi
::
CPUPlace
();
auto
gplace
=
dev_ctx
.
GetPlace
();
if
(
boxes_num
)
{
int
boxes_batch_size
=
boxes_num
->
numel
();
PADDLE_ENFORCE_EQ
(
boxes_batch_size
,
batch_size
,
errors
::
InvalidArgument
(
"The boxes_batch_size and imgs "
"batch_size must be the same. But received boxes_batch_size = %d, "
"batch_size = %d"
,
boxes_batch_size
,
batch_size
));
std
::
vector
<
int
>
boxes_num_list
(
boxes_batch_size
);
paddle
::
memory
::
Copy
(
cplace
,
boxes_num_list
.
data
(),
gplace
,
boxes_num
->
data
<
int
>
(),
sizeof
(
int
)
*
boxes_batch_size
,
0
);
int
start
=
0
;
for
(
int
n
=
0
;
n
<
boxes_batch_size
;
++
n
)
{
for
(
int
i
=
start
;
i
<
start
+
boxes_num_list
[
n
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
start
+=
boxes_num_list
[
n
];
}
}
else
{
auto
lod
=
boxes
.
lod
();
PADDLE_ENFORCE_EQ
(
lod
.
empty
(),
false
,
errors
::
InvalidArgument
(
"Input(ROIs) in ROIAlignOp does "
"not contain LoD information."
));
auto
boxes_lod
=
lod
.
back
();
int
boxes_batch_size
=
boxes_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
boxes_batch_size
,
batch_size
,
errors
::
InvalidArgument
(
"The batch size of rois and batch size "
"of images must be the same. But received rois batch size = %d, "
"and images batch size = %d"
,
boxes_batch_size
,
batch_size
));
int
boxes_num_with_lod
=
boxes_lod
[
boxes_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
boxes_num_with_lod
,
errors
::
InvalidArgument
(
"The actual number of rois and the number of rois "
"provided from Input(RoIsLoD) in RoIAlign must be the same."
" But received actual number of rois is %d, and the number "
"of rois from RoIsLoD is %d"
,
rois_num
,
boxes_num_with_lod
));
for
(
int
n
=
0
;
n
<
boxes_batch_size
;
++
n
)
{
for
(
size_t
i
=
boxes_lod
[
n
];
i
<
boxes_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
}
int
bytes
=
roi_batch_id_list
.
numel
()
*
sizeof
(
int
);
auto
roi_ptr
=
paddle
::
memory
::
Alloc
(
dev_ctx
,
bytes
);
int
*
roi_id_data
=
reinterpret_cast
<
int
*>
(
roi_ptr
->
ptr
());
paddle
::
memory
::
Copy
(
gplace
,
roi_id_data
,
cplace
,
roi_batch_id_data
,
bytes
,
dev_ctx
.
stream
());
GPUROIAlignForward
<
T
><<<
blocks
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
output_size
,
x
.
data
<
T
>
(),
boxes
.
data
<
T
>
(),
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_id_data
,
dev_ctx
.
template
Alloc
<
T
>(
out
),
aligned
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
roi_align
,
GPU
,
ALL_LAYOUT
,
phi
::
ROIAlignKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/scale_kernel.cu
浏览文件 @
39de9b8a
...
...
@@ -15,10 +15,9 @@ limitations under the License. */
#include "paddle/phi/kernels/scale_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/phi/common/float16.h"
namespace
phi
{
...
...
paddle/phi/kernels/roi_align_kernel.h
0 → 100644
浏览文件 @
39de9b8a
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/utils/optional.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ROIAlignKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
boxes
,
paddle
::
optional
<
const
DenseTensor
&>
boxes_num
,
int
pooled_height
,
int
pooled_width
,
float
spatial_scale
,
int
sampling_ratio
,
bool
aligned
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/roi_align_sig.cc
0 → 100644
浏览文件 @
39de9b8a
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
ROIAlignOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"roi_align"
,
{
"X"
,
"ROIs"
,
"RoisNum"
},
{
"pooled_height"
,
"pooled_width"
,
"spatial_scale"
,
"sampling_ratio"
,
"aligned"
},
{
"Out"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
roi_align
,
phi
::
ROIAlignOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录