reader_py.cc 17.1 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/reader_py.h"
Z
Zeng Jinle 已提交
16
#include <exception>
S
sneaxiy 已提交
17
#include <memory>
S
sneaxiy 已提交
18
#include <string>
S
sneaxiy 已提交
19 20
#include <unordered_map>
#include <utility>
S
sneaxiy 已提交
21
#include <vector>
Z
Zeng Jinle 已提交
22
#include "Python.h"
23 24
#include "boost/optional.hpp"
#include "gflags/gflags.h"
25
#include "paddle/fluid/framework/ddim.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/framework/reader.h"
27 28
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/tracer.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/operators/reader/buffered_reader.h"
30
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
S
sneaxiy 已提交
31 32 33 34
#include "paddle/fluid/operators/reader/py_reader.h"
#include "paddle/fluid/platform/place.h"
#include "pybind11/stl.h"

Z
Zeng Jinle 已提交
35 36 37 38
PADDLE_DEFINE_EXPORTED_bool(
    reader_queue_speed_test_mode, false,
    "If set true, the queue.pop will only get data from queue but not "
    "remove the data from queue for speed testing");
39

40 41 42
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

S
sneaxiy 已提交
43 44 45
namespace paddle {
namespace pybind {

Z
Zeng Jinle 已提交
46
namespace py = pybind11;
47 48 49 50
namespace reader = operators::reader;

// Check whether the tensor shape matches the VarDesc shape
// Return the different shape if exists
51
static paddle::optional<std::vector<int64_t>> DiffTensorShapeWithVarDesc(
52 53 54 55 56 57 58 59 60 61 62
    const framework::LoDTensor &tensor, const framework::VarDesc &var_desc,
    size_t num_places) {
  auto tensor_shape = tensor.dims();
  auto desc_shape = var_desc.GetShape();

  int64_t rank = tensor_shape.size();

  if (UNLIKELY(rank == 0)) {
    if (desc_shape.size() != 0) {  // Tensor rank = 0 but desc does not match
      return framework::vectorize<int64_t>(tensor_shape);
    } else {
63
      return paddle::none;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    }
  }

  PADDLE_ENFORCE_GE(tensor_shape[0], 0,
                    platform::errors::InvalidArgument(
                        "Tensor shape at dim 0 must not be less than 0"));

  if (!tensor.lod().empty()) {
    tensor_shape[0] = -1;  // unknown shape
  } else {
    int64_t split_size = (tensor_shape[0] + num_places - 1) / num_places;
    int64_t remainder = (split_size == 0 ? 0 : tensor_shape[0] % split_size);
    tensor_shape[0] = split_size;
    if (desc_shape[0] >= 0) {  // need check dim 0
      if (tensor_shape[0] != desc_shape[0]) {
        return framework::vectorize<int64_t>(tensor_shape);
      }

      if (remainder > 0) {
        tensor_shape[0] = remainder;
        return framework::vectorize<int64_t>(tensor_shape);
      }
    }
  }

  for (int64_t idx = 1; idx < rank; ++idx) {
    PADDLE_ENFORCE_GE(
        tensor_shape[idx], 0,
        platform::errors::InvalidArgument(
            "Tensor shape at dim %d must not be less than 0", idx));
    if (desc_shape[idx] >= 0 && tensor_shape[idx] != desc_shape[idx]) {
      return framework::vectorize<int64_t>(tensor_shape);
    }
  }

99
  return paddle::none;
100 101 102 103 104 105 106 107 108 109 110 111 112
}

static const std::shared_ptr<reader::LoDTensorBlockingQueue> &GetQueue(
    const std::shared_ptr<reader::LoDTensorBlockingQueue> &queue, size_t idx) {
  return queue;
}

static const std::shared_ptr<reader::LoDTensorBlockingQueue> &GetQueue(
    const std::shared_ptr<reader::OrderedMultiDeviceLoDTensorBlockingQueue>
        &queue,
    size_t idx) {
  return queue->GetQueue(idx);
}
Z
Zeng Jinle 已提交
113

114
template <typename QueueType>
S
sneaxiy 已提交
115 116
class MultiDeviceFeedReader {
 public:
S
sneaxiy 已提交
117 118
  using ResultDictList =
      std::vector<std::unordered_map<std::string, framework::LoDTensor>>;
119
  using ResultList = std::vector<std::vector<framework::LoDTensor>>;
S
sneaxiy 已提交
120

121 122 123 124
  static constexpr bool kKeepOrder =
      std::is_same<QueueType,
                   reader::OrderedMultiDeviceLoDTensorBlockingQueue>::value;

S
sneaxiy 已提交
125
  MultiDeviceFeedReader(
126
      const std::shared_ptr<QueueType> &queue,
S
sneaxiy 已提交
127
      const std::vector<std::string> &names,
128 129 130
      const std::vector<std::vector<int>> &shapes,
      const std::vector<framework::proto::VarType::Type> &dtypes,
      const std::vector<bool> &need_check_feed,
131
      const std::vector<platform::Place> &dst_places, bool use_double_buffer,
132
      bool drop_last, bool pin_memory = false)
S
sneaxiy 已提交
133
      : queue_(queue),
S
sneaxiy 已提交
134
        names_(names),
135
        pool_(new ::ThreadPool(dst_places.size())),
136 137
        drop_last_(drop_last),
        pin_memory_(pin_memory) {
138 139 140 141
    std::vector<framework::DDim> dims;
    for (auto &shape : shapes) {
      dims.push_back(framework::make_ddim(shape));
    }
142 143 144 145 146 147 148 149 150 151 152 153 154

    auto first_reader = std::make_shared<reader::PyReader>(
        GetQueue(queue, 0), dims, dtypes, need_check_feed);

    auto create_or_get_reader = [&](size_t idx) {
      if (idx == 0 ||
          std::is_same<QueueType, reader::LoDTensorBlockingQueue>::value) {
        return first_reader;
      } else {
        return std::make_shared<reader::PyReader>(GetQueue(queue, idx), dims,
                                                  dtypes, need_check_feed);
      }
    };
S
sneaxiy 已提交
155 156

    readers_.reserve(dst_places.size());
157 158
    for (size_t i = 0; i < dst_places.size(); ++i) {
      auto &p = dst_places[i];
S
sneaxiy 已提交
159
      auto *holder = new framework::ReaderHolder();
160
      auto reader = create_or_get_reader(i);
S
sneaxiy 已提交
161
      if (use_double_buffer) {
162
        VLOG(10) << "Creating " << i << "-th BufferedReader";
S
sneaxiy 已提交
163 164
        holder->Reset(
            framework::MakeDecoratedReader<operators::reader::BufferedReader>(
165
                reader, p, 2, pin_memory_));
S
sneaxiy 已提交
166 167
      } else {
        if (platform::is_gpu_place(p)) {
168 169
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Place cannot be CUDAPlace when use_double_buffer is False"));
S
sneaxiy 已提交
170 171 172 173 174
        }
        holder->Reset(reader);
      }
      readers_.emplace_back(holder);
    }
S
sneaxiy 已提交
175

S
sneaxiy 已提交
176 177
    futures_.resize(dst_places.size());
    ret_.resize(dst_places.size());
Z
Zeng Jinle 已提交
178
    exceptions_.assign(dst_places.size(), nullptr);
S
sneaxiy 已提交
179 180
    ReadAsync();
  }
S
sneaxiy 已提交
181

182 183
  bool DropLast() const { return drop_last_; }

S
sneaxiy 已提交
184
  ResultDictList ReadNext() {
Z
Zeng Jinle 已提交
185
    CheckNextStatus();
186 187
    ResultDictList result;
    result.reserve(ret_.size());
S
sneaxiy 已提交
188
    for (size_t i = 0; i < ret_.size(); ++i) {
189 190 191 192 193 194 195
      if (ret_[i].empty()) {
        if (!kKeepOrder) result.emplace_back();
        continue;
      }

      result.emplace_back();
      auto &ret = result.back();
196 197 198 199 200 201 202 203
      PADDLE_ENFORCE_EQ(names_.size(), ret_[i].size(),
                        platform::errors::InvalidArgument(
                            "The sample number of reader's input data and the "
                            "input number of feed list are not equal.\n"
                            "Possible reasons are:\n"
                            "  The generator is decorated by `paddle.batch` "
                            "and configured by `set_batch_generator`, but here "
                            "need to used `set_sample_list_generator`."));
S
sneaxiy 已提交
204
      for (size_t j = 0; j < names_.size(); ++j) {
205
        ret.emplace(names_[j], std::move(ret_[i][j]));
S
sneaxiy 已提交
206
      }
S
sneaxiy 已提交
207
    }
S
sneaxiy 已提交
208 209
    ReadAsync();
    return result;
S
sneaxiy 已提交
210 211
  }

212
  ResultList ReadNextList() {
Z
Zeng Jinle 已提交
213
    CheckNextStatus();
214 215 216
    ResultList result;
    result.reserve(ret_.size());
    for (size_t i = 0; i < ret_.size(); ++i) {
217
      if (kKeepOrder && ret_[i].empty()) continue;
218 219 220 221 222 223
      result.emplace_back(std::move(ret_[i]));
    }
    ReadAsync();
    return result;
  }

S
sneaxiy 已提交
224 225 226 227 228 229
  void Reset() {
    Shutdown();
    Start();
    ReadAsync();
  }

230 231 232 233
  void Shutdown() {
    for (auto &r : readers_) r->Shutdown();
  }

S
sneaxiy 已提交
234 235 236 237
  ~MultiDeviceFeedReader() {
    queue_->Close();
    pool_.reset();
  }
S
sneaxiy 已提交
238 239

 private:
Z
Zeng Jinle 已提交
240 241 242 243 244 245 246 247
  enum Status {
    kSuccess = 0,   // Read next data successfully
    kEOF = 1,       // Reach EOF
    kException = 2  // Exception raises when reading
  };

  Status WaitFutures(std::exception_ptr *excep) {
    *excep = nullptr;
248
    size_t success_num = 0;
Z
Zeng Jinle 已提交
249 250 251 252
    for (size_t i = 0; i < futures_.size(); ++i) {
      auto each_status = futures_[i].get();
      if (UNLIKELY(each_status != Status::kSuccess)) {
        if (UNLIKELY(each_status == Status::kException)) {
253 254 255 256 257
          PADDLE_ENFORCE_NOT_NULL(
              exceptions_[i],
              platform::errors::NotFound("exceptions_[%d] is NULL, but the "
                                         "result status is Status::kException",
                                         i));
Z
Zeng Jinle 已提交
258 259 260
          *excep = exceptions_[i];
          exceptions_[i] = nullptr;
        }
261 262
      } else {
        ++success_num;
Z
Zeng Jinle 已提交
263 264 265 266 267
      }
    }

    if (UNLIKELY(*excep)) {
      return Status::kException;
268 269 270 271
    }

    if (drop_last_) {
      return success_num == futures_.size() ? Status::kSuccess : Status::kEOF;
Z
Zeng Jinle 已提交
272
    } else {
273
      return success_num > 0 ? Status::kSuccess : Status::kEOF;
S
sneaxiy 已提交
274 275
    }
  }
S
sneaxiy 已提交
276

S
sneaxiy 已提交
277 278
  void Start() {
    for (auto &r : readers_) r->Start();
S
sneaxiy 已提交
279 280
  }

S
sneaxiy 已提交
281 282 283
  void ReadAsync() {
    for (size_t i = 0; i < readers_.size(); ++i) {
      futures_[i] = pool_->enqueue([this, i] {
Z
Zeng Jinle 已提交
284 285 286 287 288 289 290
        try {
          readers_[i]->ReadNext(&ret_[i]);
          return ret_[i].empty() ? Status::kEOF : Status::kSuccess;
        } catch (...) {
          exceptions_[i] = std::current_exception();
          return Status::kException;
        }
S
sneaxiy 已提交
291 292 293 294
      });
    }
  }

Z
Zeng Jinle 已提交
295 296 297 298 299
  void CheckNextStatus() {
    std::exception_ptr excep;
    Status status = WaitFutures(&excep);

    if (UNLIKELY(excep)) {
300 301 302 303
      PADDLE_ENFORCE_EQ(status, Status::kException,
                        platform::errors::NotFound(
                            "The exception raised is not NULL, but "
                            "the result status is not Status::kException"));
Z
Zeng Jinle 已提交
304 305 306 307 308 309 310 311 312
      std::rethrow_exception(excep);
    }

    if (UNLIKELY(status == Status::kEOF)) {
      VLOG(2) << "Raise StopIteration Exception in Python";
      py::gil_scoped_acquire guard;
      throw py::stop_iteration();
    }

313 314 315 316
    PADDLE_ENFORCE_EQ(status, Status::kSuccess,
                      platform::errors::NotFound(
                          "The function executed sucessfully, but "
                          "the result status is not Status::kSuccess"));
Z
Zeng Jinle 已提交
317 318
  }

319
  std::shared_ptr<QueueType> queue_;
S
sneaxiy 已提交
320 321 322 323
  std::vector<std::string> names_;
  std::unique_ptr<::ThreadPool> pool_;

  std::vector<std::unique_ptr<framework::ReaderHolder>> readers_;
S
sneaxiy 已提交
324

Z
Zeng Jinle 已提交
325 326 327
  std::vector<std::future<Status>> futures_;
  std::vector<std::exception_ptr> exceptions_;

S
sneaxiy 已提交
328
  std::vector<std::vector<framework::LoDTensor>> ret_;
329
  bool drop_last_;
330
  bool pin_memory_;
S
sneaxiy 已提交
331
};
S
sneaxiy 已提交
332

333 334
template <typename QueueType>
void BindMultiDeviceReader(py::module *module, const char *reader_name) {
S
sneaxiy 已提交
335 336
  auto &m = *module;

337 338 339
  using ReaderType = MultiDeviceFeedReader<QueueType>;
  py::class_<ReaderType>(m, reader_name, "")
      .def("read_next", &ReaderType::ReadNext,
S
sneaxiy 已提交
340
           py::call_guard<py::gil_scoped_release>())
341
      .def("read_next_list", &ReaderType::ReadNextList,
342
           py::call_guard<py::gil_scoped_release>())
343
      .def("read_next_var_list",
344
           [](ReaderType &self) {
345 346 347 348 349 350 351 352 353 354 355
             auto result_list = self.ReadNextList();
             auto &tensor_list = result_list[0];
             std::vector<std::shared_ptr<imperative::VarBase>> var_list;
             var_list.reserve(tensor_list.size());
             auto func = [](framework::LoDTensor &lod_tensor) {
               std::string act_name =
                   imperative::GetCurrentTracer()->GenerateUniqueName(
                       "generated_var");
               auto new_var = std::make_shared<imperative::VarBase>(act_name);
               new_var->SetPersistable(false);
               new_var->SetType(framework::proto::VarType::LOD_TENSOR);
356 357
               new_var->SetDataType(
                   framework::TransToProtoVarType(lod_tensor.dtype()));
358 359 360 361 362 363 364 365 366 367 368
               auto *tensor =
                   new_var->MutableVar()->GetMutable<framework::LoDTensor>();
               *tensor = std::move(lod_tensor);
               return new_var;
             };
             for (auto &tensor : tensor_list) {
               var_list.emplace_back(func(tensor));
             }
             return var_list;
           },
           py::call_guard<py::gil_scoped_release>())
369
      .def("reset", &ReaderType::Reset,
370 371
           py::call_guard<py::gil_scoped_release>())
      .def("shutdown", &ReaderType::Shutdown,
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
           py::call_guard<py::gil_scoped_release>());
}

void BindReader(py::module *module) {
  auto &m = *module;

  m.def("diff_tensor_shape", [](const framework::LoDTensor &tensor,
                                const framework::VarDesc &var_desc,
                                size_t num_places) -> py::object {
    auto diff = DiffTensorShapeWithVarDesc(tensor, var_desc, num_places);
    if (diff) {
      return py::cast(std::move(diff.get()));
    } else {
      return py::cast(nullptr);
    }
  });

  m.def("init_lod_tensor_blocking_queue",
        [](framework::Variable &var, size_t capacity,
           bool is_ordered) -> py::object {
          VLOG(1) << "init_lod_tensor_blocking_queue";
          if (is_ordered) {
            auto *holder = var.GetMutable<
                reader::OrderedMultiDeviceLoDTensorBlockingQueueHolder>();
            holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
            return py::cast(holder->GetQueue());
          } else {
            auto *holder =
                var.GetMutable<reader::LoDTensorBlockingQueueHolder>();
            holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
            return py::cast(holder->GetQueue());
          }
        },
        py::return_value_policy::copy);

  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("start", &framework::ReaderHolder::Start)
      .def("reset", &framework::ReaderHolder::ResetAll);

  py::class_<reader::LoDTensorBlockingQueue,
             std::shared_ptr<reader::LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
      .def("push",
           [](reader::LoDTensorBlockingQueue &self,
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
             return self.Push(lod_tensor_vec);
           },
           py::call_guard<py::gil_scoped_release>())
      .def("size", &reader::LoDTensorBlockingQueue::Size)
      .def("capacity", &reader::LoDTensorBlockingQueue::Cap)
      .def("close", &reader::LoDTensorBlockingQueue::Close)
      .def("kill", &reader::LoDTensorBlockingQueue::Kill)
      .def("wait_for_inited", &reader::LoDTensorBlockingQueue::WaitForInited,
S
sneaxiy 已提交
425 426
           py::call_guard<py::gil_scoped_release>());

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
  py::class_<reader::OrderedMultiDeviceLoDTensorBlockingQueue,
             std::shared_ptr<reader::OrderedMultiDeviceLoDTensorBlockingQueue>>(
      m, "OrderedMultiDeviceLoDTensorBlockingQueue", "")
      .def("push",
           [](reader::OrderedMultiDeviceLoDTensorBlockingQueue &self,
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
             return self.Push(lod_tensor_vec);
           },
           py::call_guard<py::gil_scoped_release>())
      .def("size", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Size)
      .def("capacity", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Cap)
      .def("close", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Close)
      .def("kill", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Kill)
      .def("wait_for_inited",
           &reader::OrderedMultiDeviceLoDTensorBlockingQueue::WaitForInited,
           py::call_guard<py::gil_scoped_release>())
      .def("reset", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Reset);

  BindMultiDeviceReader<reader::LoDTensorBlockingQueue>(
      module, "MultiDeviceFeedReader");
  BindMultiDeviceReader<reader::OrderedMultiDeviceLoDTensorBlockingQueue>(
      module, "OrderedMultiDeviceFeedReader");

S
sneaxiy 已提交
450
  m.def("create_py_reader",
451
        [](const std::shared_ptr<reader::LoDTensorBlockingQueue> &queue,
S
sneaxiy 已提交
452
           const std::vector<std::string> &names,
453 454 455
           const std::vector<std::vector<int>> &shapes,
           const std::vector<framework::proto::VarType::Type> &dtypes,
           const std::vector<bool> &need_check_feed,
S
sneaxiy 已提交
456
           const std::vector<platform::Place> &dst_places,
457
           bool use_double_buffer, bool drop_last, bool pin_memory) {
458 459
          return new MultiDeviceFeedReader<reader::LoDTensorBlockingQueue>(
              queue, names, shapes, dtypes, need_check_feed, dst_places,
460
              use_double_buffer, drop_last, pin_memory);
S
sneaxiy 已提交
461 462
        },
        py::return_value_policy::take_ownership);
463 464 465 466 467 468 469 470 471 472

  m.def(
      "create_py_reader",
      [](const std::shared_ptr<reader::OrderedMultiDeviceLoDTensorBlockingQueue>
             &queue,
         const std::vector<std::string> &names,
         const std::vector<std::vector<int>> &shapes,
         const std::vector<framework::proto::VarType::Type> &dtypes,
         const std::vector<bool> &need_check_feed,
         const std::vector<platform::Place> &dst_places, bool use_double_buffer,
473
         bool drop_last, bool pin_memory) {
474 475 476 477
        queue->SetDeviceCount(dst_places.size());
        return new MultiDeviceFeedReader<
            reader::OrderedMultiDeviceLoDTensorBlockingQueue>(
            queue, names, shapes, dtypes, need_check_feed, dst_places,
478
            use_double_buffer, drop_last, pin_memory);
479 480
      },
      py::return_value_policy::take_ownership);
S
sneaxiy 已提交
481 482 483 484
}

}  // namespace pybind
}  // namespace paddle