reader_py.cc 17.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/reader_py.h"
Z
Zeng Jinle 已提交
16
#include <exception>
S
sneaxiy 已提交
17
#include <memory>
S
sneaxiy 已提交
18
#include <string>
S
sneaxiy 已提交
19 20
#include <unordered_map>
#include <utility>
S
sneaxiy 已提交
21
#include <vector>
Z
Zeng Jinle 已提交
22
#include "Python.h"
23 24
#include "boost/optional.hpp"
#include "gflags/gflags.h"
25
#include "paddle/fluid/framework/ddim.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/framework/reader.h"
27 28
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/tracer.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/operators/reader/buffered_reader.h"
30
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
S
sneaxiy 已提交
31 32 33 34
#include "paddle/fluid/operators/reader/py_reader.h"
#include "paddle/fluid/platform/place.h"
#include "pybind11/stl.h"

Z
Zeng Jinle 已提交
35 36 37 38
PADDLE_DEFINE_EXPORTED_bool(
    reader_queue_speed_test_mode, false,
    "If set true, the queue.pop will only get data from queue but not "
    "remove the data from queue for speed testing");
39

S
sneaxiy 已提交
40 41 42
namespace paddle {
namespace pybind {

Z
Zeng Jinle 已提交
43
namespace py = pybind11;
44 45 46 47
namespace reader = operators::reader;

// Check whether the tensor shape matches the VarDesc shape
// Return the different shape if exists
48
static paddle::optional<std::vector<int64_t>> DiffTensorShapeWithVarDesc(
49 50 51 52 53 54 55 56 57 58 59
    const framework::LoDTensor &tensor, const framework::VarDesc &var_desc,
    size_t num_places) {
  auto tensor_shape = tensor.dims();
  auto desc_shape = var_desc.GetShape();

  int64_t rank = tensor_shape.size();

  if (UNLIKELY(rank == 0)) {
    if (desc_shape.size() != 0) {  // Tensor rank = 0 but desc does not match
      return framework::vectorize<int64_t>(tensor_shape);
    } else {
60
      return paddle::none;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    }
  }

  PADDLE_ENFORCE_GE(tensor_shape[0], 0,
                    platform::errors::InvalidArgument(
                        "Tensor shape at dim 0 must not be less than 0"));

  if (!tensor.lod().empty()) {
    tensor_shape[0] = -1;  // unknown shape
  } else {
    int64_t split_size = (tensor_shape[0] + num_places - 1) / num_places;
    int64_t remainder = (split_size == 0 ? 0 : tensor_shape[0] % split_size);
    tensor_shape[0] = split_size;
    if (desc_shape[0] >= 0) {  // need check dim 0
      if (tensor_shape[0] != desc_shape[0]) {
        return framework::vectorize<int64_t>(tensor_shape);
      }

      if (remainder > 0) {
        tensor_shape[0] = remainder;
        return framework::vectorize<int64_t>(tensor_shape);
      }
    }
  }

  for (int64_t idx = 1; idx < rank; ++idx) {
    PADDLE_ENFORCE_GE(
        tensor_shape[idx], 0,
        platform::errors::InvalidArgument(
            "Tensor shape at dim %d must not be less than 0", idx));
    if (desc_shape[idx] >= 0 && tensor_shape[idx] != desc_shape[idx]) {
      return framework::vectorize<int64_t>(tensor_shape);
    }
  }

96
  return paddle::none;
97 98 99 100 101 102 103 104 105 106 107 108 109
}

static const std::shared_ptr<reader::LoDTensorBlockingQueue> &GetQueue(
    const std::shared_ptr<reader::LoDTensorBlockingQueue> &queue, size_t idx) {
  return queue;
}

static const std::shared_ptr<reader::LoDTensorBlockingQueue> &GetQueue(
    const std::shared_ptr<reader::OrderedMultiDeviceLoDTensorBlockingQueue>
        &queue,
    size_t idx) {
  return queue->GetQueue(idx);
}
Z
Zeng Jinle 已提交
110

111
template <typename QueueType>
S
sneaxiy 已提交
112 113
class MultiDeviceFeedReader {
 public:
S
sneaxiy 已提交
114 115
  using ResultDictList =
      std::vector<std::unordered_map<std::string, framework::LoDTensor>>;
116
  using ResultList = std::vector<std::vector<framework::LoDTensor>>;
S
sneaxiy 已提交
117

118 119 120 121
  static constexpr bool kKeepOrder =
      std::is_same<QueueType,
                   reader::OrderedMultiDeviceLoDTensorBlockingQueue>::value;

S
sneaxiy 已提交
122
  MultiDeviceFeedReader(
123
      const std::shared_ptr<QueueType> &queue,
S
sneaxiy 已提交
124
      const std::vector<std::string> &names,
125 126 127
      const std::vector<std::vector<int>> &shapes,
      const std::vector<framework::proto::VarType::Type> &dtypes,
      const std::vector<bool> &need_check_feed,
128
      const std::vector<platform::Place> &dst_places, bool use_double_buffer,
129
      bool drop_last, bool pin_memory = false)
S
sneaxiy 已提交
130
      : queue_(queue),
S
sneaxiy 已提交
131
        names_(names),
132
        pool_(new ::ThreadPool(dst_places.size())),
133 134
        drop_last_(drop_last),
        pin_memory_(pin_memory) {
135 136 137 138
    std::vector<framework::DDim> dims;
    for (auto &shape : shapes) {
      dims.push_back(framework::make_ddim(shape));
    }
139 140 141 142 143 144 145 146 147 148 149 150 151

    auto first_reader = std::make_shared<reader::PyReader>(
        GetQueue(queue, 0), dims, dtypes, need_check_feed);

    auto create_or_get_reader = [&](size_t idx) {
      if (idx == 0 ||
          std::is_same<QueueType, reader::LoDTensorBlockingQueue>::value) {
        return first_reader;
      } else {
        return std::make_shared<reader::PyReader>(GetQueue(queue, idx), dims,
                                                  dtypes, need_check_feed);
      }
    };
S
sneaxiy 已提交
152 153

    readers_.reserve(dst_places.size());
154 155
    for (size_t i = 0; i < dst_places.size(); ++i) {
      auto &p = dst_places[i];
S
sneaxiy 已提交
156
      auto *holder = new framework::ReaderHolder();
157
      auto reader = create_or_get_reader(i);
S
sneaxiy 已提交
158
      if (use_double_buffer) {
159
        VLOG(10) << "Creating " << i << "-th BufferedReader";
S
sneaxiy 已提交
160 161
        holder->Reset(
            framework::MakeDecoratedReader<operators::reader::BufferedReader>(
162
                reader, p, 2, pin_memory_));
S
sneaxiy 已提交
163 164
      } else {
        if (platform::is_gpu_place(p)) {
165 166
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Place cannot be CUDAPlace when use_double_buffer is False"));
S
sneaxiy 已提交
167 168 169 170 171
        }
        holder->Reset(reader);
      }
      readers_.emplace_back(holder);
    }
S
sneaxiy 已提交
172

S
sneaxiy 已提交
173 174
    futures_.resize(dst_places.size());
    ret_.resize(dst_places.size());
Z
Zeng Jinle 已提交
175
    exceptions_.assign(dst_places.size(), nullptr);
S
sneaxiy 已提交
176 177
    ReadAsync();
  }
S
sneaxiy 已提交
178

179 180
  bool DropLast() const { return drop_last_; }

S
sneaxiy 已提交
181
  ResultDictList ReadNext() {
Z
Zeng Jinle 已提交
182
    CheckNextStatus();
183 184
    ResultDictList result;
    result.reserve(ret_.size());
S
sneaxiy 已提交
185
    for (size_t i = 0; i < ret_.size(); ++i) {
186 187 188 189 190 191 192
      if (ret_[i].empty()) {
        if (!kKeepOrder) result.emplace_back();
        continue;
      }

      result.emplace_back();
      auto &ret = result.back();
193 194 195 196 197 198 199 200
      PADDLE_ENFORCE_EQ(names_.size(), ret_[i].size(),
                        platform::errors::InvalidArgument(
                            "The sample number of reader's input data and the "
                            "input number of feed list are not equal.\n"
                            "Possible reasons are:\n"
                            "  The generator is decorated by `paddle.batch` "
                            "and configured by `set_batch_generator`, but here "
                            "need to used `set_sample_list_generator`."));
S
sneaxiy 已提交
201
      for (size_t j = 0; j < names_.size(); ++j) {
202
        ret.emplace(names_[j], std::move(ret_[i][j]));
S
sneaxiy 已提交
203
      }
S
sneaxiy 已提交
204
    }
S
sneaxiy 已提交
205 206
    ReadAsync();
    return result;
S
sneaxiy 已提交
207 208
  }

209
  ResultList ReadNextList() {
Z
Zeng Jinle 已提交
210
    CheckNextStatus();
211 212 213
    ResultList result;
    result.reserve(ret_.size());
    for (size_t i = 0; i < ret_.size(); ++i) {
214
      if (kKeepOrder && ret_[i].empty()) continue;
215 216 217 218 219 220
      result.emplace_back(std::move(ret_[i]));
    }
    ReadAsync();
    return result;
  }

S
sneaxiy 已提交
221 222 223 224 225 226
  void Reset() {
    Shutdown();
    Start();
    ReadAsync();
  }

227 228 229 230
  void Shutdown() {
    for (auto &r : readers_) r->Shutdown();
  }

S
sneaxiy 已提交
231 232 233 234
  ~MultiDeviceFeedReader() {
    queue_->Close();
    pool_.reset();
  }
S
sneaxiy 已提交
235 236

 private:
Z
Zeng Jinle 已提交
237 238 239 240 241 242 243 244
  enum Status {
    kSuccess = 0,   // Read next data successfully
    kEOF = 1,       // Reach EOF
    kException = 2  // Exception raises when reading
  };

  Status WaitFutures(std::exception_ptr *excep) {
    *excep = nullptr;
245
    size_t success_num = 0;
Z
Zeng Jinle 已提交
246 247 248 249
    for (size_t i = 0; i < futures_.size(); ++i) {
      auto each_status = futures_[i].get();
      if (UNLIKELY(each_status != Status::kSuccess)) {
        if (UNLIKELY(each_status == Status::kException)) {
250 251 252 253 254
          PADDLE_ENFORCE_NOT_NULL(
              exceptions_[i],
              platform::errors::NotFound("exceptions_[%d] is NULL, but the "
                                         "result status is Status::kException",
                                         i));
Z
Zeng Jinle 已提交
255 256 257
          *excep = exceptions_[i];
          exceptions_[i] = nullptr;
        }
258 259
      } else {
        ++success_num;
Z
Zeng Jinle 已提交
260 261 262 263 264
      }
    }

    if (UNLIKELY(*excep)) {
      return Status::kException;
265 266 267 268
    }

    if (drop_last_) {
      return success_num == futures_.size() ? Status::kSuccess : Status::kEOF;
Z
Zeng Jinle 已提交
269
    } else {
270
      return success_num > 0 ? Status::kSuccess : Status::kEOF;
S
sneaxiy 已提交
271 272
    }
  }
S
sneaxiy 已提交
273

S
sneaxiy 已提交
274 275
  void Start() {
    for (auto &r : readers_) r->Start();
S
sneaxiy 已提交
276 277
  }

S
sneaxiy 已提交
278 279 280
  void ReadAsync() {
    for (size_t i = 0; i < readers_.size(); ++i) {
      futures_[i] = pool_->enqueue([this, i] {
Z
Zeng Jinle 已提交
281 282 283 284 285 286 287
        try {
          readers_[i]->ReadNext(&ret_[i]);
          return ret_[i].empty() ? Status::kEOF : Status::kSuccess;
        } catch (...) {
          exceptions_[i] = std::current_exception();
          return Status::kException;
        }
S
sneaxiy 已提交
288 289 290 291
      });
    }
  }

Z
Zeng Jinle 已提交
292 293 294 295 296
  void CheckNextStatus() {
    std::exception_ptr excep;
    Status status = WaitFutures(&excep);

    if (UNLIKELY(excep)) {
297 298 299 300
      PADDLE_ENFORCE_EQ(status, Status::kException,
                        platform::errors::NotFound(
                            "The exception raised is not NULL, but "
                            "the result status is not Status::kException"));
Z
Zeng Jinle 已提交
301 302 303 304 305 306 307 308 309
      std::rethrow_exception(excep);
    }

    if (UNLIKELY(status == Status::kEOF)) {
      VLOG(2) << "Raise StopIteration Exception in Python";
      py::gil_scoped_acquire guard;
      throw py::stop_iteration();
    }

310 311 312 313
    PADDLE_ENFORCE_EQ(status, Status::kSuccess,
                      platform::errors::NotFound(
                          "The function executed sucessfully, but "
                          "the result status is not Status::kSuccess"));
Z
Zeng Jinle 已提交
314 315
  }

316
  std::shared_ptr<QueueType> queue_;
S
sneaxiy 已提交
317 318 319 320
  std::vector<std::string> names_;
  std::unique_ptr<::ThreadPool> pool_;

  std::vector<std::unique_ptr<framework::ReaderHolder>> readers_;
S
sneaxiy 已提交
321

Z
Zeng Jinle 已提交
322 323 324
  std::vector<std::future<Status>> futures_;
  std::vector<std::exception_ptr> exceptions_;

S
sneaxiy 已提交
325
  std::vector<std::vector<framework::LoDTensor>> ret_;
326
  bool drop_last_;
327
  bool pin_memory_;
S
sneaxiy 已提交
328
};
S
sneaxiy 已提交
329

330 331
template <typename QueueType>
void BindMultiDeviceReader(py::module *module, const char *reader_name) {
S
sneaxiy 已提交
332 333
  auto &m = *module;

334 335 336
  using ReaderType = MultiDeviceFeedReader<QueueType>;
  py::class_<ReaderType>(m, reader_name, "")
      .def("read_next", &ReaderType::ReadNext,
S
sneaxiy 已提交
337
           py::call_guard<py::gil_scoped_release>())
338
      .def("read_next_list", &ReaderType::ReadNextList,
339
           py::call_guard<py::gil_scoped_release>())
340
      .def("read_next_var_list",
341
           [](ReaderType &self) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
             auto result_list = self.ReadNextList();
             auto &tensor_list = result_list[0];
             std::vector<std::shared_ptr<imperative::VarBase>> var_list;
             var_list.reserve(tensor_list.size());
             auto func = [](framework::LoDTensor &lod_tensor) {
               std::string act_name =
                   imperative::GetCurrentTracer()->GenerateUniqueName(
                       "generated_var");
               auto new_var = std::make_shared<imperative::VarBase>(act_name);
               new_var->SetPersistable(false);
               new_var->SetType(framework::proto::VarType::LOD_TENSOR);
               new_var->SetDataType(lod_tensor.type());
               auto *tensor =
                   new_var->MutableVar()->GetMutable<framework::LoDTensor>();
               *tensor = std::move(lod_tensor);
               return new_var;
             };
             for (auto &tensor : tensor_list) {
               var_list.emplace_back(func(tensor));
             }
             return var_list;
           },
           py::call_guard<py::gil_scoped_release>())
365
      .def("reset", &ReaderType::Reset,
366 367
           py::call_guard<py::gil_scoped_release>())
      .def("shutdown", &ReaderType::Shutdown,
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
           py::call_guard<py::gil_scoped_release>());
}

void BindReader(py::module *module) {
  auto &m = *module;

  m.def("diff_tensor_shape", [](const framework::LoDTensor &tensor,
                                const framework::VarDesc &var_desc,
                                size_t num_places) -> py::object {
    auto diff = DiffTensorShapeWithVarDesc(tensor, var_desc, num_places);
    if (diff) {
      return py::cast(std::move(diff.get()));
    } else {
      return py::cast(nullptr);
    }
  });

  m.def("init_lod_tensor_blocking_queue",
        [](framework::Variable &var, size_t capacity,
           bool is_ordered) -> py::object {
          VLOG(1) << "init_lod_tensor_blocking_queue";
          if (is_ordered) {
            auto *holder = var.GetMutable<
                reader::OrderedMultiDeviceLoDTensorBlockingQueueHolder>();
            holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
            return py::cast(holder->GetQueue());
          } else {
            auto *holder =
                var.GetMutable<reader::LoDTensorBlockingQueueHolder>();
            holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
            return py::cast(holder->GetQueue());
          }
        },
        py::return_value_policy::copy);

  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("start", &framework::ReaderHolder::Start)
      .def("reset", &framework::ReaderHolder::ResetAll);

  py::class_<reader::LoDTensorBlockingQueue,
             std::shared_ptr<reader::LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
      .def("push",
           [](reader::LoDTensorBlockingQueue &self,
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
             return self.Push(lod_tensor_vec);
           },
           py::call_guard<py::gil_scoped_release>())
      .def("size", &reader::LoDTensorBlockingQueue::Size)
      .def("capacity", &reader::LoDTensorBlockingQueue::Cap)
      .def("close", &reader::LoDTensorBlockingQueue::Close)
      .def("kill", &reader::LoDTensorBlockingQueue::Kill)
      .def("wait_for_inited", &reader::LoDTensorBlockingQueue::WaitForInited,
S
sneaxiy 已提交
421 422
           py::call_guard<py::gil_scoped_release>());

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
  py::class_<reader::OrderedMultiDeviceLoDTensorBlockingQueue,
             std::shared_ptr<reader::OrderedMultiDeviceLoDTensorBlockingQueue>>(
      m, "OrderedMultiDeviceLoDTensorBlockingQueue", "")
      .def("push",
           [](reader::OrderedMultiDeviceLoDTensorBlockingQueue &self,
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
             return self.Push(lod_tensor_vec);
           },
           py::call_guard<py::gil_scoped_release>())
      .def("size", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Size)
      .def("capacity", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Cap)
      .def("close", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Close)
      .def("kill", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Kill)
      .def("wait_for_inited",
           &reader::OrderedMultiDeviceLoDTensorBlockingQueue::WaitForInited,
           py::call_guard<py::gil_scoped_release>())
      .def("reset", &reader::OrderedMultiDeviceLoDTensorBlockingQueue::Reset);

  BindMultiDeviceReader<reader::LoDTensorBlockingQueue>(
      module, "MultiDeviceFeedReader");
  BindMultiDeviceReader<reader::OrderedMultiDeviceLoDTensorBlockingQueue>(
      module, "OrderedMultiDeviceFeedReader");

S
sneaxiy 已提交
446
  m.def("create_py_reader",
447
        [](const std::shared_ptr<reader::LoDTensorBlockingQueue> &queue,
S
sneaxiy 已提交
448
           const std::vector<std::string> &names,
449 450 451
           const std::vector<std::vector<int>> &shapes,
           const std::vector<framework::proto::VarType::Type> &dtypes,
           const std::vector<bool> &need_check_feed,
S
sneaxiy 已提交
452
           const std::vector<platform::Place> &dst_places,
453
           bool use_double_buffer, bool drop_last, bool pin_memory) {
454 455
          return new MultiDeviceFeedReader<reader::LoDTensorBlockingQueue>(
              queue, names, shapes, dtypes, need_check_feed, dst_places,
456
              use_double_buffer, drop_last, pin_memory);
S
sneaxiy 已提交
457 458
        },
        py::return_value_policy::take_ownership);
459 460 461 462 463 464 465 466 467 468

  m.def(
      "create_py_reader",
      [](const std::shared_ptr<reader::OrderedMultiDeviceLoDTensorBlockingQueue>
             &queue,
         const std::vector<std::string> &names,
         const std::vector<std::vector<int>> &shapes,
         const std::vector<framework::proto::VarType::Type> &dtypes,
         const std::vector<bool> &need_check_feed,
         const std::vector<platform::Place> &dst_places, bool use_double_buffer,
469
         bool drop_last, bool pin_memory) {
470 471 472 473
        queue->SetDeviceCount(dst_places.size());
        return new MultiDeviceFeedReader<
            reader::OrderedMultiDeviceLoDTensorBlockingQueue>(
            queue, names, shapes, dtypes, need_check_feed, dst_places,
474
            use_double_buffer, drop_last, pin_memory);
475 476
      },
      py::return_value_policy::take_ownership);
S
sneaxiy 已提交
477 478 479 480
}

}  // namespace pybind
}  // namespace paddle