prepared_operator.cc 22.1 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

J
Jiabin Yang 已提交
17
#include "paddle/fluid/eager/eager_tensor.h"
18
#include "paddle/fluid/framework/data_type_transform.h"
19
#include "paddle/fluid/framework/details/nan_inf_utils.h"
20
#include "paddle/fluid/imperative/infer_shape_context.h"
21
#include "paddle/fluid/imperative/tracer.h"
22
#include "paddle/phi/common/int_array.h"
23
#include "paddle/phi/common/scalar.h"
24
#include "paddle/utils/small_vector.h"
Q
QingshuChen 已提交
25
#ifdef PADDLE_WITH_XPU
26
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
Q
QingshuChen 已提交
27
#endif
L
Liu-xiandong 已提交
28
#include "paddle/fluid/framework/library_type.h"
29
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
C
chenjian 已提交
30
#include "paddle/fluid/platform/profiler/event_tracing.h"
31

32
DECLARE_bool(check_nan_inf);
33
DECLARE_bool(benchmark);
F
Feng Xing 已提交
34
DECLARE_bool(run_kp_kernel);
35

J
Jiabin Yang 已提交
36 37 38
namespace paddle {
namespace imperative {

39 40
static const phi::Kernel empty_kernel;

41 42 43 44 45 46 47 48 49 50
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
51 52 53
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
54 55
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
J
Jiabin Yang 已提交
56 57 58 59 60
  } else {
    return nullptr;
  }
}

61
template <typename VarType>
J
Jiabin Yang 已提交
62
void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
79
      if (tensor && tensor->IsInitialized()) {
80 81 82 83 84 85 86 87
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
88 89 90 91 92
      }
    }
  }
}

J
Jiabin Yang 已提交
93
template <>
94 95
void HandleComplexGradToRealGrad<egr::EagerVariable>(
    const NameVarMap<egr::EagerVariable>& outs) {
J
Jiabin Yang 已提交
96 97 98
  // TODO(jiabin): Support Complex here.
}

99 100 101 102 103
void TestHandleComplexGradToRealGradEager(
    const NameVarMap<egr::EagerVariable>& outs) {
  HandleComplexGradToRealGrad<egr::EagerVariable>(outs);
}

J
Jiabin Yang 已提交
104 105
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
106
                       const framework::OpKernelType& kernel_type,
107
                       const framework::OperatorWithKernel::OpKernelFunc& func,
108
                       platform::DeviceContext* dev_ctx)
109 110 111 112
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
113 114
      dev_ctx_(dev_ctx),
      pt_kernel_(empty_kernel) {}
115

116 117 118
PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
                       const framework::OpKernelType& kernel_type,
119
                       framework::KernelSignature&& kernel_signature,
120
                       const phi::Kernel& pt_kernel,
121 122 123 124 125 126
                       platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(nullptr),
      dev_ctx_(dev_ctx),
127
      run_phi_kernel_(true),
128
      pt_kernel_signature_(std::move(kernel_signature)),
129
      pt_kernel_(pt_kernel) {}
130

131 132 133 134 135
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
136
                       const framework::AttributeMap& attrs,
137
                       const framework::AttributeMap& default_attrs) {
138
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
139
  auto* dev_ctx = pool.Get(place);
140

141 142 143 144 145 146 147 148
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
149 150 151 152
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
153 154
  }
#endif
155 156
  // NOTE(zhiqiu): for kernels on given device, for example NPU, the order to
  // choose is:
157
  // phi npu kernel > fluid npu kernel > phi cpu kernel > fluid cpu kernel
J
Jiabin Yang 已提交
158

159
  // 1. get expected kernel key
160 161 162
  auto dygraph_exe_ctx = DygraphExecutionContext<VarType>(
      op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs);
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
163

164
  framework::KernelSignature pt_kernel_signature;
165
  phi::KernelKey pt_kernel_key;
166
  std::string pt_kernel_name;
L
Liu-xiandong 已提交
167
#if defined(PADDLE_WITH_XPU)
168 169 170 171 172
  bool is_xpu_unsupport =
      paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
          !paddle::platform::is_xpu_support_op(op.Type(),
                                               expected_kernel_key) ||
      paddle::platform::is_in_xpu_black_list(op.Type());
L
Liu-xiandong 已提交
173

174
#endif
175
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(op.Type())) {
176 177
    pt_kernel_signature =
        std::move(op.GetExpectedPhiKernelArgs(dygraph_exe_ctx));
178
    VLOG(6) << pt_kernel_signature;
179

180
    pt_kernel_name = pt_kernel_signature.name;
181 182 183
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
L
Liu-xiandong 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
#ifdef PADDLE_WITH_XPU_KP
    if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
      bool use_xpu_kp_kernel_rt =
          FLAGS_run_kp_kernel && paddle::platform::is_xpu_kp_support_op(
                                     op.Type(), expected_kernel_key);
      bool use_xpu_kp_kernel_debug =
          paddle::platform::is_in_xpu_kpwhite_list(op.Type());
      if (use_xpu_kp_kernel_rt) {
        VLOG(3) << "phi xpu_kp using rt mode ";
      }
      if (use_xpu_kp_kernel_debug) {
        VLOG(3) << "phi xpu_kp using debug mode ";
      }
      bool is_xpu_kp_support =
          (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
      if (is_xpu_kp_support) {
200 201
        auto expected_kernel_key_library_type =
            expected_kernel_key.library_type_;
L
Liu-xiandong 已提交
202
        expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP;
203
        VLOG(3) << "modifing XPU KP kernel: " << op.Type()
L
Liu-xiandong 已提交
204
                << ", using_kernel_key:" << expected_kernel_key;
205 206
        phi::KernelKey try_pt_kernel_key =
            TransOpKernelTypeToPhiKernelKey(expected_kernel_key);
207 208
        if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                      try_pt_kernel_key)) {
209 210 211 212
          expected_kernel_key.library_type_ = expected_kernel_key_library_type;
          VLOG(3) << "modify XPU KP kernel: " << op.Type() << " is failed "
                  << expected_kernel_key;
        }
L
Liu-xiandong 已提交
213 214 215
      }
    }
#endif
216

217
    pt_kernel_key = TransOpKernelTypeToPhiKernelKey(expected_kernel_key);
218 219
    auto& pt_kernel = phi::KernelFactory::Instance().SelectKernel(
        pt_kernel_name, pt_kernel_key);
220

221
    if (pt_kernel.IsValid()
L
Liu-xiandong 已提交
222
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
223 224 225
        && !is_xpu_unsupport
#endif
        ) {
C
Chen Weihang 已提交
226
      VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name
227 228 229
              << " | kernel key: " << pt_kernel_key
              << " | kernel: " << pt_kernel;

F
From00 已提交
230 231
      if (expected_kernel_key.place_ != place) {
        dev_ctx = pool.Get(expected_kernel_key.place_);
W
Wilber 已提交
232
      }
F
From00 已提交
233

234 235
      return PreparedOp(op, ctx, expected_kernel_key,
                        std::move(pt_kernel_signature), pt_kernel, dev_ctx);
236
    } else {
237
      VLOG(6) << "Dynamic mode ChoosePhiKernel - kernel `" << pt_kernel_name
238 239 240 241
              << "` not found.";
    }
  }

242
  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
243 244
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
245

246 247 248
// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
249 250 251 252 253 254 255 256 257 258 259 260 261 262
#ifdef PADDLE_WITH_XPU_KP
  bool use_xpu_kp_kernel_rt =
      paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
      FLAGS_run_kp_kernel &&
      paddle::platform::is_xpu_kp_support_op(op.Type(), expected_kernel_key);
  bool use_xpu_kp_kernel_debug =
      paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
      paddle::platform::is_in_xpu_kpwhite_list(op.Type());
  bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
  if (is_xpu_kp_support) {
    expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP;
  }
#endif

263 264 265
  if ((kernels_iter == all_op_kernels.end() ||
       kernels_iter->second.find(expected_kernel_key) ==
           kernels_iter->second.end())
L
Liu-xiandong 已提交
266
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
267
      || is_xpu_unsupport
268
#endif
269 270 271 272
#if defined(PADDLE_WITH_XPU_KP)
      || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
          ) {
273
    if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(op.Type())) {
274 275
      auto pt_cpu_kernel_key =
          FallBackToCpu(expected_kernel_key, pt_kernel_key, op);
276
      auto& pt_cpu_kernel = phi::KernelFactory::Instance().SelectKernel(
277 278 279 280 281 282
          pt_kernel_name, pt_cpu_kernel_key);
      if (pt_cpu_kernel.IsValid()) {
        VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << pt_kernel_name
                << " | kernel key: " << pt_cpu_kernel_key
                << " | kernel: " << pt_cpu_kernel;
        auto* cpu_ctx = pool.Get(paddle::platform::CPUPlace());
283 284 285
        return PreparedOp(op, ctx, expected_kernel_key,
                          std::move(pt_kernel_signature), pt_cpu_kernel,
                          cpu_ctx);
286 287 288 289
      }
    }
  }

290 291 292 293 294
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
295

J
Jiabin Yang 已提交
296 297
  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
298

299
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
300
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_) &&
301
      (kernel_iter == kernels.end() || is_xpu_unsupport)) {
302 303 304
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
305 306 307
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
308
#endif
L
Liu-xiandong 已提交
309 310

#ifdef PADDLE_WITH_XPU_KP
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    if (use_xpu_kp_kernel_rt) {
      VLOG(3) << "xpu_kp using rt mode ";
    }
    if (use_xpu_kp_kernel_debug) {
      VLOG(3) << "xpu_kp using debug mode ";
    }
    if (is_xpu_kp_support) {
      expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
      VLOG(3) << "using XPU KP kernel: " << op.Type()
              << ", using_kernel_key:" << expected_kernel_key;
    }
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
      VLOG(3) << "missing XPU kernel: " << op.Type()
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
332 333 334
  }
#endif

335 336
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
337
      paddle::platform::is_npu_place(expected_kernel_key.place_)) {
338 339 340
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
341 342 343
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
344 345 346
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
347
      paddle::platform::is_mlu_place(expected_kernel_key.place_)) {
348 349 350 351 352 353
    VLOG(3) << "missing MLU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
354 355 356 357 358 359 360 361 362 363
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      paddle::platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << place.GetDeviceType() << " kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
364
#endif
365 366
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
367 368 369 370
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
371

372 373 374 375
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

376
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
377 378
}

379 380 381 382
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
383
                               const framework::AttributeMap& attrs,
384 385
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs);
386 387 388 389 390 391
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
392
                               const framework::AttributeMap& attrs,
393
                               const framework::AttributeMap& default_attrs) {
394
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
395
                                      default_attrs);
396 397
}

398 399
PreparedOp PreparedOp::Prepare(const NameVarMap<egr::EagerVariable>& ins,
                               const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
400 401 402 403
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
                               const framework::AttributeMap& attrs,
                               const framework::AttributeMap& default_attrs) {
404 405
  return PrepareImpl<egr::EagerVariable>(ins, outs, op, place, attrs,
                                         default_attrs);
J
Jiabin Yang 已提交
406
}
407 408 409
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
410
    const framework::OpKernelType& kernel_type,
411
    const framework::OperatorWithKernel::OpKernelFunc& func,
412
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
413 414
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
415 416
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
417

418
  {
C
chenjian 已提交
419 420 421
    platform::RecordEvent record_event(op.Type() + "::infer_shape",
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
422 423 424 425 426 427
    DygraphInferShapeContext<VarType> infer_shape_ctx(
        &ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type);
    op.Info().infer_shape_(&infer_shape_ctx);
  }

  {
C
chenjian 已提交
428 429 430
    platform::RecordEvent record_event(op.Type() + "::compute",
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
H
hong 已提交
431

432 433 434
    func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
                                          attrs, default_attrs));
  }
435

436 437 438 439 440
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

L
Leo Chen 已提交
441 442 443 444 445 446 447 448
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
464
}
H
hong 已提交
465

466 467 468
template <typename VarType>
static void PreparedOpRunPtImpl(
    const framework::OperatorBase& op,
469
    const framework::OpKernelType& kernel_type,
470
    const framework::KernelSignature& pt_kernel_signature,
471
    const phi::Kernel& pt_kernel, platform::DeviceContext* dev_ctx,
472 473
    const NameVarMap<VarType>& ins, const NameVarMap<VarType>& outs,
    const framework::AttributeMap& attrs,
474
    const framework::AttributeMap& default_attrs) {
475
  {
C
chenjian 已提交
476 477 478
    platform::RecordEvent record_event(op.Type() + "::infer_shape",
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
479 480 481 482 483 484
    DygraphInferShapeContext<VarType> infer_shape_ctx(
        &ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type);
    op.Info().infer_shape_(&infer_shape_ctx);
  }

  {
C
chenjian 已提交
485 486 487
    platform::RecordEvent record_event(op.Type() + "::compute",
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
488

489
    PreparePhiData<VarType>(pt_kernel, pt_kernel_signature, ins);
490

491
    phi::KernelContext pt_kernel_context;
492 493 494
    BuildDygraphPhiKernelContext<VarType>(pt_kernel_signature, pt_kernel, ins,
                                          outs, attrs, default_attrs, dev_ctx,
                                          &pt_kernel_context);
495

496 497
    pt_kernel(&pt_kernel_context);
  }
498

499 500 501 502 503
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

504 505
  if (FLAGS_benchmark) {
    dev_ctx->Wait();
506 507
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
508 509 510 511
    VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error";
#endif
  }

512 513 514
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
515 516
}

517 518
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
519 520
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
521
  if (run_phi_kernel_) {
522
    PreparedOpRunPtImpl<VarBase>(op_, kernel_type_, pt_kernel_signature_,
523 524
                                 pt_kernel_, dev_ctx_, ins, outs, attrs,
                                 default_attrs);
525 526 527 528
  } else {
    PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
                               outs, attrs, default_attrs);
  }
529
}
H
hong 已提交
530

531 532
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
533 534
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
535
  if (run_phi_kernel_) {
536
    PreparedOpRunPtImpl<VariableWrapper>(
537 538
        op_, kernel_type_, pt_kernel_signature_, pt_kernel_, dev_ctx_, ins,
        outs, attrs, default_attrs);
539 540 541 542
  } else {
    PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
                                       ins, outs, attrs, default_attrs);
  }
J
Jiabin Yang 已提交
543 544
}

545 546
void PreparedOp::Run(const NameVarMap<egr::EagerVariable>& ins,
                     const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
547 548
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
549
  if (run_phi_kernel_) {
550
    PreparedOpRunPtImpl<egr::EagerVariable>(
J
Jiabin Yang 已提交
551 552 553
        op_, kernel_type_, pt_kernel_signature_, pt_kernel_, dev_ctx_, ins,
        outs, attrs, default_attrs);
  } else {
554 555 556
    PreparedOpRunImpl<egr::EagerVariable>(op_, ctx_, kernel_type_, func_,
                                          dev_ctx_, ins, outs, attrs,
                                          default_attrs);
J
Jiabin Yang 已提交
557 558 559
  }
}

J
Jiabin Yang 已提交
560 561
}  // namespace imperative
}  // namespace paddle