selected_rows_functor.cc 26.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16

L
lidanqing 已提交
17 18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

21 22 23 24
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
25 26
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
27 28 29 30
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
31 32 33 34 35 36
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
54 55 56 57 58 59 60 61 62 63 64 65
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
66 67

    auto in1_place = input1.place();
68 69 70
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
71
    auto in2_place = input2.place();
72 73 74
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
75
    auto out_place = context.GetPlace();
76 77 78
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
79 80 81

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
82 83
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place), out_data,
                 BOOST_GET_CONST(platform::CPUPlace, in1_place), in1_data,
84 85 86
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
87
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place),
88
                 out_data + in1_value.numel(),
89
                 BOOST_GET_CONST(platform::CPUPlace, in2_place), in2_data,
90 91 92 93
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
94 95
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
96 97

template <typename T>
Q
QI JUN 已提交
98 99
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
100 101 102 103 104
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
105 106 107 108 109 110 111 112 113 114 115 116
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
117 118 119 120 121

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
122 123 124 125 126 127 128 129 130 131 132 133
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
134

Q
QI JUN 已提交
135
    SetConstant<platform::CPUDeviceContext, T> functor;
136 137 138 139 140 141 142 143 144 145 146 147 148 149
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
150
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
151 152 153
  }
};

Q
QI JUN 已提交
154 155
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
156 157

template <typename T>
Q
QI JUN 已提交
158 159
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
160 161 162 163
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
164 165 166 167 168 169
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
170 171 172 173 174 175 176 177

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
178
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
179 180

    auto in1_place = input1.place();
181 182 183
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
184
    auto in2_place = input2->place();
185 186 187
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
188 189 190

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
191
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, in2_place),
Q
QI JUN 已提交
192
                 in2_data + input2_offset,
193
                 BOOST_GET_CONST(platform::CPUPlace, in1_place), in1_data,
Q
QI JUN 已提交
194 195 196 197
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
198 199 200 201
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
202

M
minqiyang 已提交
203 204 205 206 207 208 209 210 211 212 213 214
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<framework::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  framework::SelectedRows* input2) {
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
215 216 217 218 219 220
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
247
template <typename T>
Q
QI JUN 已提交
248 249
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
250 251
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
Q
Qiao Longfei 已提交
252
    if (UNLIKELY(input1.rows().size() == 0)) {
253 254 255
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
256 257
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
258 259 260 261 262 263
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
264 265 266 267 268

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
269 270 271 272 273 274
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
288 289 290 291
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
292 293
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
294

T
typhoonzero 已提交
295 296 297 298 299 300 301 302
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

L
lidanqing 已提交
303
template <typename T>
304 305 306
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
    BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
307
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
308 309
}

310 311 312 313
template <typename T>
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
    BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
T
Tao Luo 已提交
314
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
315 316
    out[i] += in[i];
  }
T
typhoonzero 已提交
317 318
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
template <typename T>
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
add_sparse_inputs(const std::vector<const framework::SelectedRows*>& inputs,
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
                  int64_t input_width,
                  const platform::CPUDeviceContext& context, T* out_data) {
#ifndef PADDLE_WITH_MKLDNN
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                            &input_data[i * input_width],
                            &out_data[out_i * input_width]);
    }
#endif
  }
}

template <typename T>
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
add_sparse_inputs(const std::vector<const framework::SelectedRows*>& inputs,
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
                  int64_t input_width,
                  const platform::CPUDeviceContext& context, T* out_data) {
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                            &input_data[i * input_width],
                            &out_data[out_i * input_width]);
    }
  }
}

T
typhoonzero 已提交
377 378
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
T
wip  
typhoonzero 已提交
379
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
380 381
                                     const framework::SelectedRows& input,
                                     const bool sorted_result = false) {
T
wip  
typhoonzero 已提交
382
    framework::SelectedRows out;
383
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
384 385 386 387 388
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
389 390
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
391 392
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
393
    (*this)(context, inputs, output, sorted_result);
394
  }
T
typhoonzero 已提交
395

396 397
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
398 399
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
Q
Qiao Longfei 已提交
400
    if (inputs.size() == 0) {
M
minqiyang 已提交
401
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
402 403 404 405
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
406
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
407 408 409 410 411
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
412
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
413 414 415 416
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
417 418
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
419
    size_t row_num = 0;
420
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
421
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
422 423
        continue;
      }
424
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
425 426 427
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
428
      PADDLE_ENFORCE_EQ(input_height, input->height(),
429 430
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
431
      row_num += input->rows().size();
432 433
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
434

435
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
436
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
437
        framework::make_ddim(
438
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
439
        context.GetPlace());
440
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
457
        auto in_numel = in->rows().size() * input_width;
458
        memory::Copy(BOOST_GET_CONST(platform::CPUPlace, out_place),
459
                     out_data + copied_numel,
460
                     BOOST_GET_CONST(platform::CPUPlace, in_place), in_data,
461 462 463 464 465 466
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
467

468 469 470
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
471

472 473 474
      out.set_rows(merge_rows);

      math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
475
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
476 477 478 479

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
480
      }
481

482
      add_sparse_inputs<T>(inputs, rows_to_id, input_width, context, out_data);
T
typhoonzero 已提交
483
    }
T
wip  
typhoonzero 已提交
484 485 486
  }
};

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
532 533 534
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
535
      PADDLE_ENFORCE_EQ(input_height, input->height(),
536 537
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

    math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
573 574 575
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
576 577 578 579 580 581 582 583 584 585 586 587
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

T
wip  
typhoonzero 已提交
588 589
template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
590 591
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
592
template struct MergeAdd<platform::CPUDeviceContext,
593
                         paddle::platform::complex<float>>;
594
template struct MergeAdd<platform::CPUDeviceContext,
595
                         paddle::platform::complex<double>>;
596 597
template struct MergeAdd<platform::CPUDeviceContext,
                         paddle::platform::bfloat16>;
T
wip  
typhoonzero 已提交
598

599 600 601 602 603
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
604 605
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
606 607 608
  void operator()(const platform::CPUDeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
609 610
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
611 612 613 614 615 616
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
617 618 619 620 621

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
622 623 624 625 626 627
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
672 673 674 675
  }
};

}  // namespace scatter
676 677 678
}  // namespace math
}  // namespace operators
}  // namespace paddle