multi_devices_graph_builder.cc 13.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
15 16
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
17
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
20
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
22 23 24 25

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
26

Y
Yu Yang 已提交
27 28 29
#include <string>
#include <vector>

Y
Yu Yang 已提交
30 31 32
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
33 34

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
35 36 37 38
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
39
    const std::vector<Scope *> &local_scopes,
40
    platform::NCCLContextMap *nccl_ctxs, bool use_default_grad_scale)
Y
Yu Yang 已提交
41 42 43
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
44
      nccl_ctxs_(nccl_ctxs) {
Y
Yu Yang 已提交
45 46 47 48 49
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
50
    const std::vector<Scope *> &local_scopes, bool use_default_grad_scale)
Y
Yu Yang 已提交
51 52
    : loss_var_name_(loss_var_name),
      places_(places),
53
      local_scopes_(local_scopes) {
Y
Yu Yang 已提交
54
#endif
Y
Yu Yang 已提交
55 56 57
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
Y
Yu Yang 已提交
58
  use_default_grad_scale_ = use_default_grad_scale;
Y
Yu Yang 已提交
59 60
}

Y
Yu Yang 已提交
61 62
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
63 64
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
65
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
66 67
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
68

Y
Yu Yang 已提交
69 70 71
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
72 73 74
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
75 76
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
77 78 79
  }
}

T
typhoonzero 已提交
80 81 82 83 84 85
bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
                                            OpDesc *send_op) const {
  if (send_op == nullptr) {
    return false;
  }

Y
Yu Yang 已提交
86 87 88 89 90
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
                    const std::vector<std::string> &sendvars) -> bool {
T
typhoonzero 已提交
91 92 93
    for (auto &var : opvars) {
      if (var.find(".block") != std::string::npos &&
          std::find(sendvars.begin(), sendvars.end(), var) != sendvars.end()) {
Y
Yu Yang 已提交
94
        return true;
T
typhoonzero 已提交
95 96
      }
    }
Y
Yu Yang 已提交
97
    return false;
T
typhoonzero 已提交
98 99 100 101 102 103 104 105 106 107
  };

  if (op.Type() == "split") {
    return checker(op.OutputArgumentNames(), send_op->InputArgumentNames());
  } else if (op.Type() == "concat") {
    return checker(op.InputArgumentNames(), send_op->OutputArgumentNames());
  }
  return false;
}

Y
Yu Yang 已提交
108 109 110
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
111
  SSAGraph &result = *graph;
C
chengduoZH 已提交
112
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
113 114 115 116 117

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
118

C
chengduoZH 已提交
119 120 121
  size_t cur_update_sparse_gp_dev_id = 0;
  std::vector<std::unordered_set<std::string>> sparse_var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_sparse_var_name_set;
C
chengduoZH 已提交
122

C
chengduoZH 已提交
123 124
  sparse_var_name_on_devices.resize(places_.size());
  bcast_sparse_var_name_set.resize(places_.size());
C
chengduoZH 已提交
125

T
typhoonzero 已提交
126
  // Find "send" op first for split is in front of send.
Y
Yu Yang 已提交
127
  OpDesc *send_op = GetSendOpDesc(program);
T
typhoonzero 已提交
128

Y
Yu Yang 已提交
129 130
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yu Yang 已提交
131 132 133 134
    if (op->Type() == "send") {
      // append send op if program is distributed trainer main program.
      // always use the first device
      CreateSendOp(&result, *op);
T
typhoonzero 已提交
135 136
    } else if (IsDistTrainOp(*op, send_op)) {
      CreateComputationalOps(&result, *op, 1);
Y
Yu Yang 已提交
137
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
138 139
      // user can customize loss@grad if not use_default_grad_scale_
      if (use_default_grad_scale_) {
Y
Yu Yang 已提交
140 141
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
142
      is_forwarding = false;
Y
Yu Yang 已提交
143
    } else {
C
chengduoZH 已提交
144
      int op_dev_id = GetOpDeviceID(sparse_var_name_on_devices, *op);
C
chengduoZH 已提交
145 146 147 148 149
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
C
chengduoZH 已提交
150
          sparse_var_name_on_devices[op_dev_id].emplace(var_name);
C
chengduoZH 已提交
151 152 153 154
        }
      }

      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
155
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
156
        // broadcast, and each gradient is only broadcast once.
Y
Yu Yang 已提交
157 158
        for (auto &og : op->OutputArgumentNames()) {
          if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
159
            if (IsSparseGradient(og)) {
C
chengduoZH 已提交
160 161 162 163
              CreateReduceOp(&result, cur_update_sparse_gp_dev_id, og);
              sparse_var_name_on_devices[cur_update_sparse_gp_dev_id].emplace(
                  og);
              bcast_sparse_var_name_set[cur_update_sparse_gp_dev_id].emplace(
C
chengduoZH 已提交
164
                  og.substr(0, og.size() - strlen(kGradVarSuffix)));
C
chengduoZH 已提交
165 166
              cur_update_sparse_gp_dev_id =
                  (cur_update_sparse_gp_dev_id + 1) % places_.size();
167 168
            } else {
              InsertNCCLAllReduceOp(&result, og);
C
chengduoZH 已提交
169
            }
Y
Yu Yang 已提交
170 171 172 173 174 175
          }
        }
      }
    }
  }

C
chengduoZH 已提交
176
  // Insert BCast Ops
C
chengduoZH 已提交
177 178
  for (size_t dev_id = 0; dev_id < bcast_sparse_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_sparse_var_name_set[dev_id];
C
chengduoZH 已提交
179 180 181 182 183
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }

Y
Yu Yang 已提交
184 185 186 187 188
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
189

Y
Yu Yang 已提交
190 191 192 193 194
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
195 196 197 198 199 200
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    PrintGraphviz(*graph, sout);
    VLOG(10) << sout.str();
  }

Y
Yu Yang 已提交
201
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
202 203
}

204 205 206 207 208 209
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  auto og_var = local_scopes_[0]->FindVar(og);
  PADDLE_ENFORCE_NOT_NULL(og_var);
  return og_var->IsType<SelectedRows>();
}

C
chengduoZH 已提交
210
int MultiDevSSAGraphBuilder::GetOpDeviceID(
C
chengduoZH 已提交
211 212
    const std::vector<std::unordered_set<std::string>>
        &sparse_var_name_on_devices,
C
chengduoZH 已提交
213 214 215 216
    const OpDesc &op) const {
  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
C
chengduoZH 已提交
217 218
    for (size_t i = 0; i < sparse_var_name_on_devices.size(); ++i) {
      if (sparse_var_name_on_devices[i].count(var_name)) {
C
chengduoZH 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
                                                size_t dev_id) const {
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
  auto *in = result->vars_.at(dev_id).at(p_name).back().get();
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_.at(dev_id).at(p_name);
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
261 262 263 264 265 266 267 268 269
OpDesc *MultiDevSSAGraphBuilder::GetSendOpDesc(
    const ProgramDesc &program) const {
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "send") {
      return op;
    }
  }
  return nullptr;
}
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278 279
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
280 281
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
332 333 334
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
335 336 337
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
338
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
339 340 341
  }
}

C
chengduoZH 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(
    SSAGraph *result, int dst_dev_id, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
Yu Yang 已提交
371 372 373 374 375 376 377 378
void MultiDevSSAGraphBuilder::CreateSendOp(SSAGraph *result,
                                           const OpDesc &op) const {
  auto &p = places_[0];
  auto *s = local_scopes_[0];
  // FIXME(wuyi): send op always copy from GPU 0
  result->ops_.emplace_back(new SendOpHandle(op, s, p));
  // Create inputs for output on original place and no ssa output
  // is created for send op.
Y
Yu Yang 已提交
379
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
380 381 382 383 384 385 386
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
  // FIXME(yy): Do not hard code like this
  return op.OutputArgumentNames().size() == 1 &&
         op.OutputArgumentNames()[0] == GradVarName(loss_var_name_);
}
C
chengduoZH 已提交
387

Y
Yu Yang 已提交
388 389 390
}  // namespace details
}  // namespace framework
}  // namespace paddle