NewRemoteParameterUpdater.cpp 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "NewRemoteParameterUpdater.h"
#include "Trainer.h"
#include "paddle/utils/Stat.h"

DECLARE_int32(trainer_id);
DECLARE_string(save_dir);

namespace paddle {
NewRemoteParameterUpdater::NewRemoteParameterUpdater(
    const OptimizationConfig &config, const std::string pserverSpec)
W
wuyi05 已提交
25 26
    : trainerConfig_(config),
      parameterClient_(-1),
27 28 29
      newParameters_(nullptr),
      newGradients_(nullptr),
      pserverSpec_(pserverSpec) {}
30

31 32 33 34 35 36 37 38 39 40 41
NewRemoteParameterUpdater::NewRemoteParameterUpdater(
    const OptimizationConfig &config,
    const std::string pserverSpec,
    const bool useEtcd)
    : trainerConfig_(config),
      parameterClient_(-1),
      newParameters_(nullptr),
      newGradients_(nullptr),
      pserverSpec_(pserverSpec),
      useEtcd_(useEtcd) {}

42 43 44 45 46 47 48 49 50 51
void NewRemoteParameterUpdater::init(
    const std::vector<ParameterPtr> &parameters) {
  ParameterUpdater::init(parameters);

  for (auto &para : parameters_) {
    para->getBuf(PARAMETER_VALUE)->zeroMem();
    para->getBuf(PARAMETER_GRADIENT)->zeroMem();
  }

  // create parameter server client.
52
  if (useEtcd_) {
H
Helin Wang 已提交
53 54
    parameterClient_ =
        paddle_new_etcd_pserver_client((char *)pserverSpec_.c_str());
55 56 57 58
  } else {
    parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(),
                                                 FLAGS_trainer_id == 0);
  }
59 60

  // init new parameter and gradient.
Q
qiaolongfei 已提交
61 62
  newParameters_ = initNewParameter(PARAMETER_VALUE);
  newGradients_ = initNewParameter(PARAMETER_GRADIENT);
63 64 65 66 67 68 69

  // init parameter, one trainer will get the opportunity to int parameter and
  // send them to parameter server. Others will get the initialized parameter
  // from parameter server
  if (paddle_begin_init_params(parameterClient_)) {
    LOG(INFO) << "paddle_begin_init_params start";
    for (int i = 0; i < parameterSize(); ++i) {
Q
qiaolongfei 已提交
70
      auto paramConfig = parameters_[i]->getConfig();
W
wuyi05 已提交
71 72 73 74 75 76 77 78
      LOG(INFO) << "old param config: " << paramConfig.DebugString();
      // FIXME(typhoonzero): convert old paramConfig to optimizerConfig
      OptimizerConfig optimizeConfigV2;
      auto sgdConfigV2 = optimizeConfigV2.mutable_sgd();
      sgdConfigV2->set_momentum(paramConfig.momentum());
      sgdConfigV2->set_decay(paramConfig.decay_rate());
      optimizeConfigV2.set_lr_policy(paddle::OptimizerConfig::Const);
      auto constlr = optimizeConfigV2.mutable_const_lr();
武毅 已提交
79 80 81 82 83
      if (paramConfig.has_learning_rate()) {
        constlr->set_learning_rate(paramConfig.learning_rate());
      } else {
        constlr->set_learning_rate(trainerConfig_.learning_rate());
      }
W
wuyi05 已提交
84 85 86 87 88 89 90
      if (trainerConfig_.algorithm() == "sgd") {
        optimizeConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
        // FIXME: config all algorithms
      } else {
        optimizeConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
      }
      std::string bytes = optimizeConfigV2.SerializeAsString();
Q
qiaolongfei 已提交
91 92 93 94
      const char *array = bytes.data();
      int size = (int)bytes.size();
      paddle_init_param(
          parameterClient_, *newParameters_[i], (void *)array, size);
95 96 97 98
    }
    paddle_finish_init_params(parameterClient_);
    LOG(INFO) << "paddle_begin_init_params done";
  } else {
Q
qiaolongfei 已提交
99
    paddle_get_params(parameterClient_, newParameters_, parameterSize());
100 101 102 103 104 105 106 107 108
  }

  LOG(INFO) << "NewRemoteParameterUpdater initialized";
}

void NewRemoteParameterUpdater::updateImpl(Parameter *para) {}

void NewRemoteParameterUpdater::finishBatch(real cost) {
  // send gradient to parameter server.
109
  paddle_send_grads(parameterClient_, newGradients_, parameterSize());
110
  // get the updated parameter from parameterClient.
Q
qiaolongfei 已提交
111
  paddle_get_params(parameterClient_, newParameters_, parameterSize());
112 113 114 115 116 117 118 119 120 121

  // clear gradient after update parameter.
  for (auto &para : parameters_) {
    para->getBuf(PARAMETER_GRADIENT)->zeroMem();
  }
}

void NewRemoteParameterUpdater::startPass() {}

bool NewRemoteParameterUpdater::finishPass() { return true; }
W
wuyi05 已提交
122
}  // namespace paddle