NewRemoteParameterUpdater.cpp 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "NewRemoteParameterUpdater.h"
#include "Trainer.h"
#include "paddle/utils/Stat.h"

DECLARE_int32(trainer_id);
DECLARE_string(save_dir);

namespace paddle {
NewRemoteParameterUpdater::NewRemoteParameterUpdater(
    const OptimizationConfig &config, const std::string pserverSpec)
25 26 27 28 29
    : parameterClient_(-1),
      newParameters_(nullptr),
      newGradients_(nullptr),
      names_(nullptr),
      pserverSpec_(pserverSpec) {}
30 31 32 33 34 35 36 37 38 39 40

void NewRemoteParameterUpdater::init(
    const std::vector<ParameterPtr> &parameters) {
  ParameterUpdater::init(parameters);

  for (auto &para : parameters_) {
    para->getBuf(PARAMETER_VALUE)->zeroMem();
    para->getBuf(PARAMETER_GRADIENT)->zeroMem();
  }

  // create parameter server client.
Q
qiaolongfei 已提交
41 42
  parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(),
                                               FLAGS_trainer_id == 0);
43 44 45 46 47 48 49 50

  // init names_ for get parameter through paddle_cclient
  names_ = (char **)malloc(parameterSize() * sizeof(char *));
  for (int i = 0; i < parameterSize(); ++i) {
    names_[i] = (char *)parameters_[i]->getName().c_str();
  }

  // init new parameter and gradient.
Q
qiaolongfei 已提交
51 52
  newParameters_ = initNewParameter(PARAMETER_VALUE);
  newGradients_ = initNewParameter(PARAMETER_GRADIENT);
53 54 55 56 57 58 59

  // init parameter, one trainer will get the opportunity to int parameter and
  // send them to parameter server. Others will get the initialized parameter
  // from parameter server
  if (paddle_begin_init_params(parameterClient_)) {
    LOG(INFO) << "paddle_begin_init_params start";
    for (int i = 0; i < parameterSize(); ++i) {
Q
qiaolongfei 已提交
60 61 62 63 64 65
      auto paramConfig = parameters_[i]->getConfig();
      std::string bytes = paramConfig.SerializeAsString();
      const char *array = bytes.data();
      int size = (int)bytes.size();
      paddle_init_param(
          parameterClient_, *newParameters_[i], (void *)array, size);
66 67 68 69 70
    }
    paddle_finish_init_params(parameterClient_);
    LOG(INFO) << "paddle_begin_init_params done";
  } else {
    paddle_get_params(
Q
qiaolongfei 已提交
71
        parameterClient_, names_, newParameters_, parameterSize());
72 73 74 75 76 77 78 79 80
  }

  LOG(INFO) << "NewRemoteParameterUpdater initialized";
}

void NewRemoteParameterUpdater::updateImpl(Parameter *para) {}

void NewRemoteParameterUpdater::finishBatch(real cost) {
  // send gradient to parameter server.
81
  paddle_send_grads(parameterClient_, newGradients_, parameterSize());
82 83 84 85 86 87 88 89 90 91 92 93 94
  // get the updated parameter from parameterClient.
  paddle_get_params(parameterClient_, names_, newParameters_, parameterSize());

  // clear gradient after update parameter.
  for (auto &para : parameters_) {
    para->getBuf(PARAMETER_GRADIENT)->zeroMem();
  }
}

void NewRemoteParameterUpdater::startPass() {}

bool NewRemoteParameterUpdater::finishPass() { return true; }
}