linalg.py 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
from paddle.common_ops_import import *
Z
Zhang Ting 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type
18
from ..fluid.framework import in_dygraph_mode, _varbase_creator
19

20 21
__all__ = [
    'matmul',
L
liuwei1031 已提交
22
    'dot',
23
    #  'einsum',
24
    'norm',
25
    #  'transpose',
Z
Zhang Ting 已提交
26
    'dist',
27
    't',
28
    'cross',
G
Guo Sheng 已提交
29
    'cholesky',
30 31
    #  'tensordot',
    'bmm'
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
]


def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
    """
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
      :math:`[1, D]` in transposed form.

    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
      performs in the following way.

      - If both are 2-D, they are multiplied like conventional matrices.
      - If either is n-D, it is treated as a stack of matrices residing in the
        last two dimensions and a batched matrix multiply supporting broadcast
        applies on the two tensors.

    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        alpha (float): The scale of output. Default 1.0.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], y: [B, ..., K, N]
            # paddle.matmul(x, y)  # out: [B, ..., M, N]

            # x: [B, M, K], y: [B, K, N]
            # paddle.matmul(x, y)  # out: [B, M, N]

            # x: [B, M, K], y: [K, N]
            # paddle.matmul(x, y)  # out: [B, M, N]

            # x: [M, K], y: [K, N]
            # paddle.matmul(x, y)  # out: [M, N]

            # x: [B, M, K], y: [K]
            # paddle.matmul(x, y)  # out: [B, M]

            # x: [K], y: [K]
            # paddle.matmul(x, y)  # out: [1]

            # x: [M], y: [N]
            # paddle.matmul(x, y, True, True)  # out: [M, N]

101
            import paddle
102 103 104 105 106 107 108 109 110 111 112 113
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.data(name='y', shape=[3, 2], dtype='float32')
            out = paddle.matmul(x, y, True, True)
    """
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

    if in_dygraph_mode():
114 115 116 117
        out = _varbase_creator(dtype=x.dtype)
        core.ops.matmul(x, y, out, 'transpose_X', transpose_x, 'transpose_Y',
                        transpose_y, 'alpha', float(alpha))
        return out
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs=attrs)
    return out
Z
Zhang Ting 已提交
166 167


168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
    """
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

    Args:
        input (Variable): The input tensor could be N-D tensor, and the input data
            type could be float32 or float64.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `1`, `2`,
            and any positive real number yielding the corresponding p-norm.
        axis (int|list, optional): The axis on which to apply norm operation. If axis is int
            or list with only one element, the vector norm is computed over the axis.
            If axis is a list with two elements, the matrix norm is computed over the axis.
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        out (Variable, optional): The output tensor, default value is None. It's data type
            must be the same as the input Tensor.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: Tensor, results of norm operation on the specified axis of input tensor,
        it's data type is the same as input's Tensor.
 
    Raises:
        TypeError, if out data type is different with the input data type.
        ValueError, If `p` or `axis` is invalid.
    
    Examples:
        .. code-block:: python
            
            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3, 5], dtype='float64')
            
            # compute frobenius norm along last two dimensions.
            out_fro = paddle.norm(x, p='fro', axis=[1,2])
            
            # compute 2-order vector norm along last dimension.
            out_pnorm = paddle.norm(x, p=2, axis=-1)
    """

    def frobenius_norm(input, dim=None, keepdim=False, out=None, name=None):
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
          out (Variable, optional): The tensor variable storing the output.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
        attrs = {
            'dim': dim if dim != None else [-2, -1],
            'keep_dim': keepdim,
            'reduce_all': False
        }
        if len(attrs['dim']) == len(input.shape):
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
        if out is None:
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype())
        else:
            check_type(out, 'out', (Variable), 'frobenius_norm')
            check_dtype(
                out.dtype, out.name,
                convert_dtype(input.dtype), 'frobenius_norm',
                '(The out data type in frobenius_norm must be the same with input data type.)'
            )

        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs)
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
                    out=None,
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
          out (Variable, optional): The tensor variable storing the output.
        """
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
            'epsilon': 1e-12,
        }
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

        helper = LayerHelper('p_norm', **locals())
        if out is None:
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype())
        else:
            check_type(out, 'out', (Variable), 'p_norm')
            check_dtype(
                out.dtype, out.name,
                convert_dtype(input.dtype), 'p_norm',
                '(The out data type in p_norm must be the same with input data type.)'
            )

        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs)
        return out

    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
                return frobenius_norm(
                    input, dim=axis, keepdim=keepdim, out=out, name=name)
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
            return vector_norm(
                input, porder=p, axis=axis, keepdim=keepdim, out=out, name=name)
        else:
            raise ValueError("only valid p type is string or float, found {}".
                             format(type(p)))

    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
        if isinstance(p, (int, float)):
            return vector_norm(
                input, axis=axis, porder=p, keepdim=keepdim, out=out, name=name)
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
            return frobenius_norm(
                input, dim=axis, keepdim=keepdim, out=out, name=name)
        else:
            raise ValueError(
                "unspport p for matrix norm, expcept 'fro', found {}".format(p))
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


Z
Zhang Ting 已提交
343 344 345
def dist(x, y, p=2):
    """
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
346 347
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

    When p = inf, the inf-norm of z is the maximum element of z.

    .. math::

        ||z||_\infty=\max_i |z_i|

    When p = -inf, the negative-inf-norm of z is the minimum element of z.

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
        x (Variable): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Variable): 1-D to 6-D Tensor, its data type is float32 or float64.
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
        Variable: Tensor that is the p-norm of (x - y).

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(np.array([[3, 3],[3, 3]]).astype(np.float32))
                y = fluid.dygraph.to_variable(np.array([[3, 3],[3, 1]]).astype(np.float32))
                out = paddle.dist(x, y, 0)
                print(out.numpy()) # out = [1.]

                out = paddle.dist(x, y, 2)
                print(out.numpy()) # out = [2.]

                out = paddle.dist(x, y, float("inf"))
                print(out.numpy()) # out = [2.]

                out = paddle.dist(x, y, float("-inf"))
                print(out.numpy()) # out = [0.]
    """
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
liuwei1031 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452


def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
   
    .. note::
       Only support 1-d Tensor(vector).

    Parameters:
        x(Variable): 1-D ``Tensor`` or ``LoDTensor``. Its datatype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Variable): 1-D ``Tensor`` or ``LoDTensor``. Its datatype soulde be ``float32``, ``float64``, ``int32``, ``int64``
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

453 454 455
    Returns:
        Variable: the calculated result Tensor/LoDTensor.

L
liuwei1031 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    Examples:

    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np
        
        with fluid.dygraph.guard():
          x = fluid.dygraph.to_variable(np.random.uniform(0.1, 1, [10]).astype(np.float32))
          y = fluid.dygraph.to_variable(np.random.uniform(1, 3, [10]).astype(np.float32))
          z = paddle.dot(x, y)
          print(z.numpy())

    """
    op_type = 'dot'
472 473 474 475 476
    # skip var type check in dygraph mode to improve efficiency
    if in_dygraph_mode():
        op = getattr(core.ops, op_type)
        return op(x, y)

L
liuwei1031 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
    helper.append_op(
        type="dot", inputs={'X': x,
                            'Y': y}, attrs={}, outputs={"Out": out})
    return out
495 496 497 498 499 500 501 502 503


def t(input, name=None):
    """
    Transpose <=2-D tensor. 
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to 
    the fluid.layers.transpose function which perm dimensions set 0 and 1.
    
    Args:
504
        input (Variable): The input Tensor. It is a N-D (N<=2) Tensor of data types float16, float32, float64, int32.
505 506 507
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
508
        Variable: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    
    For Example:
        .. code-block:: text
        # Example 1 (0-D tensor)
         x = tensor([0.79])
         paddle.t(x) = tensor([0.79])
         # Example 2 (1-D tensor)
         x = tensor([0.79, 0.84, 0.32])
         paddle.t(x) = tensor([0.79, 0.84, 0.32])
        
         # Example 3 (2-D tensor)
         x = tensor([0.79, 0.84, 0.32],
                    [0.64, 0.14, 0.57])
         paddle.t(x) = tensor([0.79, 0.64],
                              [0.84, 0.14],
                              [0.32, 0.57])
    
     Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3],
                            dtype='float32')
            x_transposed = paddle.t(x)
            print x_transposed.shape
            #(3L, 2L)
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
        out, _ = core.ops.transpose2(input, 'axis', perm)
        return out

    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': [1, 0]})
    return out
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627


def cross(input, other, dim=None):
    """
    Returns the cross product of vectors in dimension `dim` of the `input` and `other` tensor. 
    Inputs must have the same shape, and the size of their dim-th dimension should be equla to 3. 
    If `dim` is not given, it defaults to the first dimension found with the size 3.
    
    Args:
        input (Variable): The first input tensor variable.
        other (Variable): The second input tensor variable.
        dim (int): The dimension to take the cross-product in.

    Returns:
        Variable: A Tensor with same data type as `input`.
        
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            data_x = np.array([[1.0, 1.0, 1.0],
                               [2.0, 2.0, 2.0],
                               [3.0, 3.0, 3.0]])
            data_y = np.array([[1.0, 1.0, 1.0],
                               [1.0, 1.0, 1.0],
                               [1.0, 1.0, 1.0]])

            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(data_x)
                y = fluid.dygraph.to_variable(data_y)
                out_z1 = paddle.cross(x, y)
                print(out_z1.numpy())
                #[[-1. -1. -1.]
                # [ 2.  2.  2.]
                # [-1. -1. -1.]]
                out_z2 = paddle.cross(x, y, dim=1)
                print(out_z2.numpy())
                #[[0. 0. 0.]
                # [0. 0. 0.]
                # [0. 0. 0.]]
    """
    helper = LayerHelper("cross", **locals())
    if in_dygraph_mode():
        if dim:
            return core.ops.cross(input, other, 'dim', dim)
        else:
            return core.ops.cross(input, other)

    out = helper.create_variable_for_type_inference(input.dtype)
    attrs = dict()
    if dim:
        attrs['dim'] = dim

    helper.append_op(
        type='cross',
        inputs={'X': input,
                'Y': other},
        outputs={'Out': out},
        attrs=attrs)
    return out
628 629


G
Guo Sheng 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
def cholesky(x, upper=False):
    """
    Computes the Cholesky decomposition of one symmetric positive-definite
    matrix or batches of symmetric positive-definite matrice. 
    
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
        x (Variable): The input tensor. Its shape should be `[*, M, M]`,
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
        Variable: A Tensor with same shape and data type as `x`. It represents \
            triangular matrices generated by Cholesky decomposition.
        
    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                a = np.random.rand(3, 3)
                a_t = np.transpose(a, [1, 0])
                x = np.matmul(a, a_t) + 1e-03
                x = fluid.dygraph.to_variable(x)
                out = paddle.cholesky(x, upper=False)
                print(out.numpy())
                # [[1.190523   0.         0.        ]
                #  [0.9906703  0.27676893 0.        ]
                #  [1.25450498 0.05600871 0.06400121]]

    """
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper})
    return out


683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a Tensor or LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        import paddle
        import paddle.fluid as fluid
        x = fluid.layers.data(name='x', shape=[10, 3, 4], dtype='float32')
        y = fluid.layers.data(name='y', shape=[10, 4, 5], dtype='float32')
        out = paddle.bmm(x, y)
    
        # In dygraph mode:
        # size input1: (2, 2, 3) and input2: (2, 3, 2)
        input1 = np.array([[[1.0, 1.0, 1.0],[2.0, 2.0, 2.0]],[[3.0, 3.0, 3.0],[4.0, 4.0, 4.0]]])
        input2 = np.array([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],[[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(input1)
            y = fluid.dygraph.to_variable(input2)
            out = paddle.bmm(x, y)
            #output size: (2, 2, 2)
            #output value:
            #[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]
            out_np = out.numpy()
    """

    helper = LayerHelper('bmm', **locals())
    if in_dygraph_mode():
        return core.ops.bmm(x, y)
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out