test_cast_op.py 7.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17 18
import unittest
import numpy as np
19 20

import paddle
21
import paddle.fluid.core as core
22 23
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Y
Yiqun Liu 已提交
24
from op_test import OpTest, convert_uint16_to_float, convert_float_to_uint16
H
hong 已提交
25
from paddle.fluid.framework import _test_eager_guard
26 27 28
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
Y
Yu Yang 已提交
29 30


Y
Yiqun Liu 已提交
31
class TestCastOpFp32ToFp64(OpTest):
32

Y
Yu Yang 已提交
33 34 35 36 37
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
38 39
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP64)
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['X'], ['Out'])


Y
Yiqun Liu 已提交
50
class TestCastOpFp16ToFp32(OpTest):
51

K
Kexin Zhao 已提交
52 53
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
54
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
55 56 57 58 59 60
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
61
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
62 63

    def test_check_output(self):
K
Kexin Zhao 已提交
64
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
65 66


Y
Yiqun Liu 已提交
67
class TestCastOpFp32ToFp16(OpTest):
68

K
Kexin Zhao 已提交
69 70 71 72 73 74 75 76 77
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP16)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
78
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
79 80

    def test_check_output(self):
K
Kexin Zhao 已提交
81
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
82 83


Y
Yiqun Liu 已提交
84
class TestCastOpBf16ToFp32(OpTest):
85

Y
Yiqun Liu 已提交
86 87 88 89 90 91 92 93 94
    def setUp(self):
        ipt = np.array(np.random.randint(10, size=[10, 10])).astype('uint16')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_uint16_to_float(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.BF16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
95
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
96 97 98 99 100 101

    def test_check_output(self):
        self.check_output()


class TestCastOpFp32ToBf16(OpTest):
102

Y
Yiqun Liu 已提交
103 104 105 106 107 108 109 110 111
    def setUp(self):
        ipt = np.random.random(size=[10, 10]).astype('float32')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_float_to_uint16(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.BF16)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
112
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
113 114 115 116 117

    def test_check_output(self):
        self.check_output()


118
class TestCastOpError(unittest.TestCase):
119

120 121 122
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
123 124
            x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
125 126 127
            self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')


H
hong 已提交
128
class TestCastOpEager(unittest.TestCase):
129

H
hong 已提交
130 131 132 133 134 135
    def test_eager(self):
        with paddle.fluid.dygraph.base.guard():
            with _test_eager_guard():
                x = paddle.ones([2, 2], dtype="float16")
                x.stop_gradient = False
                out = paddle.cast(x, "float32")
136 137
                np.testing.assert_array_equal(out,
                                              np.ones([2, 2]).astype('float32'))
H
hong 已提交
138
                out.backward()
139
                np.testing.assert_array_equal(x.gradient(), x.numpy())
H
hong 已提交
140 141 142
                self.assertTrue(x.gradient().dtype == np.float16)


143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
class TestCastDoubleGradCheck(unittest.TestCase):

    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.cast_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestCastTripleGradCheck(unittest.TestCase):

    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.cast_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Y
Yu Yang 已提交
217
if __name__ == '__main__':
218
    paddle.enable_static()
Y
Yu Yang 已提交
219
    unittest.main()