test_cast_op.py 3.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17 18
import unittest
import numpy as np
19 20

import paddle
21
import paddle.fluid.core as core
22 23
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Y
Yiqun Liu 已提交
24
from op_test import OpTest, convert_uint16_to_float, convert_float_to_uint16
Y
Yu Yang 已提交
25 26


Y
Yiqun Liu 已提交
27
class TestCastOpFp32ToFp64(OpTest):
Y
Yu Yang 已提交
28 29 30 31 32
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
33 34
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP64)
Y
Yu Yang 已提交
35 36 37 38 39 40 41 42 43 44
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['X'], ['Out'])


Y
Yiqun Liu 已提交
45
class TestCastOpFp16ToFp32(OpTest):
K
Kexin Zhao 已提交
46 47
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
48
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
49 50 51 52 53 54 55 56
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'

    def test_check_output(self):
K
Kexin Zhao 已提交
57
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
58 59


Y
Yiqun Liu 已提交
60
class TestCastOpFp32ToFp16(OpTest):
K
Kexin Zhao 已提交
61 62 63 64 65 66 67 68 69 70 71
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP16)
        }
        self.op_type = 'cast'

    def test_check_output(self):
K
Kexin Zhao 已提交
72
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
73 74


Y
Yiqun Liu 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
class TestCastOpBf16ToFp32(OpTest):
    def setUp(self):
        ipt = np.array(np.random.randint(10, size=[10, 10])).astype('uint16')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_uint16_to_float(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.BF16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()


class TestCastOpFp32ToBf16(OpTest):
    def setUp(self):
        ipt = np.random.random(size=[10, 10]).astype('float32')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_float_to_uint16(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.BF16)
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()


105
class TestCastOpError(unittest.TestCase):
106 107 108 109 110 111 112 113
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')


Y
Yu Yang 已提交
114
if __name__ == '__main__':
115
    paddle.enable_static()
Y
Yu Yang 已提交
116
    unittest.main()