test_imperative_mnist.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
M
minqiyang 已提交
26 27
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable
28 29 30
from test_imperative_base import new_program_scope


M
minqiyang 已提交
31
class SimpleImgConvPool(fluid.dygraph.Layer):
M
minqiyang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
71

M
minqiyang 已提交
72
    def forward(self, inputs):
M
minqiyang 已提交
73 74 75
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
76 77


M
minqiyang 已提交
78
class MNIST(fluid.dygraph.Layer):
M
minqiyang 已提交
79 80
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)
81

M
minqiyang 已提交
82
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
83
            self.full_name(), 20, 5, 2, 2, act="relu")
84

M
minqiyang 已提交
85
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
86
            self.full_name(), 50, 5, 2, 2, act="relu")
M
minqiyang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
106 107 108 109 110 111 112 113 114
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

M
minqiyang 已提交
115
    def test_mnist_float32(self):
116
        seed = 90
M
minqiyang 已提交
117
        epoch_num = 1
118 119 120
        batch_size = 128
        batch_num = 50

M
minqiyang 已提交
121
        with fluid.dygraph.guard():
122 123 124
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
125 126
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
127 128 129 130 131 132 133 134

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
135

M
minqiyang 已提交
136
            mnist.train()
137
            dy_param_init_value = {}
M
minqiyang 已提交
138
            for epoch in range(epoch_num):
139 140 141 142 143 144
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
145
                    label.stop_gradient = True
M
minqiyang 已提交
146 147 148 149 150

                    cost = mnist(img)
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

L
lujun 已提交
151
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
152 153 154

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
155
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
156

L
lujun 已提交
157
                    avg_loss.backward()
M
minqiyang 已提交
158 159 160 161 162
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
163
                        dy_param_value[param.name] = param.numpy()
164 165 166 167 168 169 170 171

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

M
minqiyang 已提交
172 173
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
174
            train_reader = paddle.batch(
175 176 177
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True)
178 179 180 181 182

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
183 184 185
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)
186 187 188 189

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
190
            for param in mnist.parameters():
191 192 193 194 195 196 197 198
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
199 200
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
201 202
                    if batch_id >= batch_num:
                        break
M
minqiyang 已提交
203 204 205 206
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
207 208
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])
M
minqiyang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
225 226

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
227 228 229 230
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

231
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
232
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
233 234 235 236


if __name__ == '__main__':
    unittest.main()