test_imperative_mnist.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
M
minqiyang 已提交
26
from paddle.fluid.imperative.nn import FC
27 28 29 30
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope


M
minqiyang 已提交
31
class MLP(fluid.imperative.Layer):
32
    def __init__(self, param_attr=None, bias_attr=None):
M
minqiyang 已提交
33 34
        self._fc1 = FC(10)
        self._fc2 = FC(10)
35

M
minqiyang 已提交
36 37 38 39
    def forward(self, inputs):
        y = self._fc1(inputs)
        y = self._fc2(y)
        return y
40 41


M
minqiyang 已提交
42 43 44
class TestImperativeOptimizerBase(unittest.TestCase):
    def setUp(self):
        self.batch_num = 2
45

M
minqiyang 已提交
46 47
    def get_optimizer(self):
        self.optimizer = SGDOptimizer(learning_rate=1e-3)
48

M
minqiyang 已提交
49
    def test_optimizer_float32(self):
50 51 52 53 54
        seed = 90
        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
55 56
            mlp = MLP()
            self.get_optimizer()
57
            train_reader = paddle.batch(
M
minqiyang 已提交
58
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
59 60 61

            dy_param_init_value = {}
            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
62
                if batch_id >= self.batch_num:
63 64
                    break

M
minqiyang 已提交
65
                dy_x_data = np.array(
66 67 68 69
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)

M
minqiyang 已提交
70
                img = to_variable(dy_x_data)
71 72 73
                label = to_variable(y_data)
                label._stop_gradient = True

M
minqiyang 已提交
74 75
                cost = mlp(img)
                avg_loss = fluid.layers.reduce_mean(cost)
76 77 78 79 80 81 82 83
                dy_out = avg_loss._numpy()

                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init_value[param.name] = param._numpy()

                avg_loss._backward()
M
minqiyang 已提交
84 85
                self.optimizer.minimize(avg_loss)
                mlp.clear_gradients()
86 87 88 89 90 91 92 93 94 95 96 97 98
                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            mnist = MNIST()
M
minqiyang 已提交
99
            self.get_optimizer()
100
            train_reader = paddle.batch(
M
minqiyang 已提交
101
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
102 103 104 105 106

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
107 108
            avg_loss = fluid.layers.reduce_mean(cost)
            self.optimizer.minimize(avg_loss)
109 110 111 112

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
113
            for param in mnist.parameters():
114 115 116 117 118 119 120 121 122
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
123
                if batch_id >= self.batch_num:
124 125
                    break

M
minqiyang 已提交
126
                static_x_data = np.array(
127 128 129 130 131 132 133
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

                fetch_list = [avg_loss.name]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
134
                              feed={"pixel": static_x_data,
135 136 137 138 139 140 141 142 143
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
144 145 146 147
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

148
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
149
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
150 151 152 153


if __name__ == '__main__':
    unittest.main()