reduce_op.h 17.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17 18
#include <algorithm>
#include <string>
W
whs 已提交
19
#include <vector>
20

21 22
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/operators/cast_op.h"
W
Wu Yi 已提交
23
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
G
guosheng 已提交
24 25 26 27

namespace paddle {
namespace operators {

28 29
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
30
    ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, Functor>(              \
31 32
        context.template device_context<DeviceContext>(), *input, output, \
        dims, keep_dim);                                                  \
W
whs 已提交
33 34
  }

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
using Tensor = framework::Tensor;

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
  ReduceKernelFunctor(const Tensor* input, Tensor* output,
                      const std::vector<int>& dims, bool keep_dim,
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
      HANDLE_DIM(4, 3);
      HANDLE_DIM(4, 2);
      HANDLE_DIM(4, 1);
      HANDLE_DIM(3, 2);
      HANDLE_DIM(3, 1);
      HANDLE_DIM(2, 1);
      HANDLE_DIM(1, 1);
    }
  }
};
Q
QI JUN 已提交
81
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
82
class ReduceKernel : public framework::OpKernel<T> {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;

    if (out_dtype < 0) {
      auto* cast_input = context.Input<Tensor>("X");
      cast_out_dtype =
          static_cast<framework::proto::VarType::Type>(cast_input->type());
      framework::VisitDataType(
          cast_out_dtype,
          ReduceKernelFunctor<DeviceContext, T, Functor>(
              cast_input, output, dims, keep_dim, reduce_all, context));
    } else {
      Tensor tmp_tensor;
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
      auto* input = context.Input<Tensor>("X");

      tmp_tensor.Resize(input->dims());
      framework::VisitDataType(
          cast_out_dtype,
          CastOpFunctor<DeviceContext, T>(
              input, &tmp_tensor,
              context.template device_context<DeviceContext>()));
      framework::VisitDataType(
          cast_out_dtype,
          ReduceKernelFunctor<DeviceContext, T, Functor>(
              &tmp_tensor, output, dims, keep_dim, reduce_all, context));
    }
  }
};

template <typename DeviceContext, typename OutT, typename Functor>
class BoolReduceKernel : public framework::OpKernel<OutT> {
G
guosheng 已提交
121 122
 public:
  void Compute(const framework::ExecutionContext& context) const override {
123
    bool reduce_all = context.Attr<bool>("reduce_all");
124 125
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
126
    output->mutable_data<OutT>(context.GetPlace());
127 128 129 130

    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");

131 132
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
133 134
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
135 136 137 138
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
139
      functor(place, &x, &out, reduce_dim);
140
    } else {
141 142
      int ndim = input->dims().size();
      int rdim = dims.size();
143 144 145 146 147 148 149 150 151 152
      // comments for accelerating compiling temporarily.
      //      HANDLE_DIM(6, 5);
      //      HANDLE_DIM(6, 4);
      //      HANDLE_DIM(6, 3);
      //      HANDLE_DIM(6, 2);
      //      HANDLE_DIM(6, 1);
      //      HANDLE_DIM(5, 4);
      //      HANDLE_DIM(5, 3);
      //      HANDLE_DIM(5, 2);
      //      HANDLE_DIM(5, 1);
W
whs 已提交
153 154 155 156 157 158 159
      HANDLE_DIM(4, 3);
      HANDLE_DIM(4, 2);
      HANDLE_DIM(4, 1);
      HANDLE_DIM(3, 2);
      HANDLE_DIM(3, 1);
      HANDLE_DIM(2, 1);
      HANDLE_DIM(1, 1);
G
guosheng 已提交
160 161 162
    }
  }
};
163 164
template <typename DeviceContext, typename T, typename Functor,
          bool kNoNeedBufferX = false, bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
165
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
166
 public:
167 168
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
169
    bool reduce_all = context.Attr<bool>("reduce_all");
170 171 172
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
173

174 175 176
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

177 178 179 180 181 182 183 184 185 186 187
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

L
lvmengsi 已提交
188 189 190 191
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;

192 193 194 195 196 197 198 199 200 201
    if (reduce_all) {
      auto x = EigenVector<T>::Flatten(*input0);
      auto x_reduce = EigenVector<T>::From(*input1);
      auto x_reduce_grad = EigenVector<T>::From(*input2);
      auto x_grad = EigenVector<T>::Flatten(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto broadcast_dim =
          Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
      Functor functor;
202
      functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
203 204
              broadcast_dim[0]);
    } else {
205
      int rank = input0->dims().size();
206 207
      switch (rank) {
        case 1:
208 209 210
          ReduceGradFunctor<DeviceContext, T, 1, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
211 212
          break;
        case 2:
213 214 215
          ReduceGradFunctor<DeviceContext, T, 2, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
216 217
          break;
        case 3:
218 219 220
          ReduceGradFunctor<DeviceContext, T, 3, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
221 222
          break;
        case 4:
223 224 225
          ReduceGradFunctor<DeviceContext, T, 4, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
226 227
          break;
        case 5:
228 229 230
          ReduceGradFunctor<DeviceContext, T, 5, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
231 232
          break;
        case 6:
233 234 235
          ReduceGradFunctor<DeviceContext, T, 6, Functor>(
              context.template device_context<DeviceContext>(), *input0,
              *input1, *input2, output, dims);
236 237
          break;
      }
G
guosheng 已提交
238 239
    }
  }
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
      auto in_kernel_type =
          framework::OpKernelType(pre_input->type(), context.GetPlace());
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
      framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
                               &tmp_tensor);
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
260
};
G
guosheng 已提交
261

262 263 264
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
265

266
  void InferShape(framework::InferShapeContext* ctx) const override {
267 268
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
269 270
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
271
    PADDLE_ENFORCE_LE(x_rank, 6,
272 273 274 275 276
                      platform::errors::InvalidArgument(
                          "The input tensor X's dimensions of ReduceOp "
                          "should be less equal than 6. But received X's "
                          "dimensions = %d, X's shape = [%s].",
                          x_rank, x_dims));
277
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
278 279 280 281 282 283
    PADDLE_ENFORCE_GT(dims.size(), 0,
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
284

285
    for (size_t i = 0; i < dims.size(); ++i) {
286
      PADDLE_ENFORCE_LT(dims[i], x_rank,
287 288 289 290 291
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
        ctx->SetOutputDim(
            "Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
318 319 320
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
321 322
      auto out_dims = framework::make_ddim(dims_vector);
      ctx->SetOutputDim("Out", out_dims);
323
      if (dims.size() > 0 && dims[0] != 0) {
324 325 326 327 328 329 330
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
};

G
Guo Sheng 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

344 345 346
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
347

348
  void InferShape(framework::InferShapeContext* ctx) const override {
349 350 351
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ReduceOp");
352 353
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
354 355 356 357 358
    PADDLE_ENFORCE_LE(x_rank, 6,
                      platform::errors::InvalidArgument(
                          "Tensors with rank at most 6 are supported by "
                          "ReduceOp. Received tensor with rank %d.",
                          x_rank));
359
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
360
    for (size_t i = 0; i < dims.size(); ++i) {
361
      PADDLE_ENFORCE_LT(dims[i], x_rank,
362 363 364 365 366
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
W
whs 已提交
367
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
368 369 370 371 372 373
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
374
    }
375
  }
376 377 378 379

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
380 381 382 383 384 385
    int in_dtype = ctx.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      return framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          ctx.GetPlace());
    }
386 387 388
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
389
  }
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
414 415 416 417 418 419 420 421 422 423
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
424 425
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
426

427 428 429
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
430

431 432
)DOC",
                               GetOpType(), GetName()));
G
guosheng 已提交
433
  }
434 435 436 437

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
438 439 440 441
};

}  // namespace operators
}  // namespace paddle
442

443 444
namespace ops = paddle::operators;

H
hong 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
      op_name, ops::ReduceOp, __##op_name##Maker__,                           \
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
459 460 461 462 463
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
464 465 466 467
  REGISTER_OPERATOR(                                                     \
      op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__,         \
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);