conv_cudnn_op.cu.cc 36.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
Q
qingqing01 已提交
18
#include "paddle/fluid/operators/conv_cudnn_helper.h"
19
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
Y
Yi Wang 已提交
20 21 22
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
23
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
K
Kexin Zhao 已提交
24
#include "paddle/fluid/platform/float16.h"
25
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
26

Y
Yu Yang 已提交
27
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
28 29
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
30
            "true, the algorithm is deterministic.");
31 32
DEFINE_uint64(conv_workspace_size_limit,
              paddle::platform::kDefaultConvWorkspaceSizeLimitMB,
33 34 35
              "cuDNN convolution workspace limit in MB unit.");
DEFINE_bool(cudnn_exhaustive_search, false,
            "Whether enable exhaustive search for cuDNN convolution or "
翟飞跃 已提交
36
            "not, default is False.");
C
chengduoZH 已提交
37

武毅 已提交
38 39 40 41 42 43 44 45
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
46 47
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
48
using framework::AlgorithmsCache;
武毅 已提交
49

Q
qingqing01 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

武毅 已提交
67
template <typename T>
68
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
69 70
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
71
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
72
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
73
                   "It must use CUDAPlace.");
武毅 已提交
74 75 76 77 78 79 80 81
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
82 83
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
84 85
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
武毅 已提交
86 87 88 89 90 91 92 93 94 95 96

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
97 98 99 100 101 102 103
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
104
#if CUDNN_VERSION_MIN(7, 0, 1)
翟飞跃 已提交
105
    // cudnn 7 can support groups, no need to do it manually
武毅 已提交
106 107
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
108
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
109 110 111
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
112

C
chengduoZH 已提交
113 114 115 116 117 118
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
119

Q
qingqing01 已提交
120 121 122 123
    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(input->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w);
    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(output->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h, &o_w);
武毅 已提交
124

Q
qingqing01 已提交
125 126
    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
武毅 已提交
127 128 129
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
130
    size_t workspace_size_limit = 0;
131 132
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
133
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
134 135
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
136
    }
137

武毅 已提交
138
    // ------------------- cudnn conv algorithm ---------------------
139
    cudnnConvolutionFwdAlgo_t algo{};
140
    bool half_float = false;
141

142 143 144 145 146 147 148 149 150
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
151
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
152
      half_float = true;
M
minqiyang 已提交
153
      VLOG(5) << "use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
154
    } else {
155 156
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
M
minqiyang 已提交
157
      VLOG(5) << "NOT use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
158
    }
159
#endif
K
Kexin Zhao 已提交
160

161 162
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
163 164
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
Q
qingqing01 已提交
165 166 167

    // TODO(dangqingqing) simplify the following code by SearchAlgorithm in
    // conv_cudnn_helper.h
168
    bool has_got_workspace_size = false;
169
    if ((!exhaustive_search) && (!half_float)) {
170 171 172 173 174 175 176 177 178 179
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionFwdAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, kNUM_CUDNN_FWD_ALGS, &perf_count,
          perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
180 181 182

      // get workspace size able to allocate
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
183
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
          cudnn_output_desc, algo, &workspace_size_in_bytes));

      // NOTE(zjl): cudnnGetConvolutionForwardAlgorithm_v7 cannot limit
      // workspace size. If the workspace size found by v7 exceeds the limit,
      // we should fallback to non-v7 method to find another algorithm.
      if (workspace_size_in_bytes > workspace_size_limit) {
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size_in_bytes << ") exceeds the limit("
                << workspace_size_limit << ")";
#endif
        CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
            handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
            cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
            workspace_size_limit, &algo));
#if CUDNN_VERSION >= 7001
      } else {
        has_got_workspace_size = true;
      }
203 204
#endif

205 206
      VLOG(3) << "cuDNN forward algo " << algo;
    } else if (exhaustive_search && (!half_float)) {
207 208
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>(0);
209

210
      algo = algo_cache.GetAlgorithm(
211 212 213 214
          x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
            int returned_algo_count;
            std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
                fwd_perf_stat;
215

216 217 218 219 220 221 222 223 224 225
            auto cudnn_find_func = [&](void* cudnn_workspace) {
              CUDNN_ENFORCE(
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                      filter_data, cudnn_conv_desc, cudnn_output_desc,
                      output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      fwd_perf_stat.data(), cudnn_workspace,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

            VLOG(3) << "Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = fwd_perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return fwd_perf_stat[0].algo;
          });
      VLOG(3) << "choose algo " << algo;
    } else {
      PADDLE_ENFORCE(half_float,
                     "cuDNN exhaustive search doesn't support half float.");
    }

241 242 243 244 245 246 247
    if (!has_got_workspace_size) {
      // get workspace size able to allocate
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, algo, &workspace_size_in_bytes));
    }

K
Kexin Zhao 已提交
248 249 250 251 252
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

253
    // Allocate on GPU memory
254 255 256 257 258 259 260
    Tensor cudnn_workspace =
        ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
            framework::make_ddim(
                {static_cast<int64_t>(workspace_size_in_bytes)}),
            dev_ctx);
    void* cudnn_workspace_ptr =
        static_cast<void*>(cudnn_workspace.data<int8_t>());
Z
Zeng Jinle 已提交
261 262 263
    VLOG(2) << "Cudnn workspace size fwd: "
            << static_cast<double>(workspace_size_in_bytes) / (1 << 20)
            << " MB";
武毅 已提交
264
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
265
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
266
    for (int i = 0; i < groups; i++) {
267 268 269 270 271
      CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace_ptr, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
武毅 已提交
272 273 274 275 276
    }
  }
};

template <typename T>
277
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
278 279
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
280
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
281
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
282
                   "It must use CUDAPlace.");
武毅 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
297 298
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
299 300 301 302
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    if (exhaustive_search && FLAGS_cudnn_deterministic) {
      PADDLE_THROW(
翟飞跃 已提交
303
          "Can't set exhaustive_search True and "
304 305
          "FLAGS_cudnn_deterministic True at same time.");
    }
武毅 已提交
306 307 308 309 310 311 312 313 314

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
315 316 317 318 319 320 321
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
322
#if CUDNN_VERSION_MIN(7, 0, 1)
翟飞跃 已提交
323
    // cudnn 7 can support groups, no need to do it manually
武毅 已提交
324 325
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
326
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
327 328 329
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
330

C
chengduoZH 已提交
331 332
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
333
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
334 335 336 337
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Enable Tensor Core for cudnn backward
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "use cudnn_tensor_op_math for backward";
    } else {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
      VLOG(5) << "NOT use cudnn_tensor_op_math for backward";
    }
#endif

Q
qingqing01 已提交
354 355 356 357 358
    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(input->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w);
    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(output_grad->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h,
             &o_w);
武毅 已提交
359

Q
qingqing01 已提交
360 361
    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
武毅 已提交
362 363
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
364 365
    cudnnConvolutionBwdDataAlgo_t data_algo{};
    cudnnConvolutionBwdFilterAlgo_t filter_algo{};
武毅 已提交
366
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
367
    size_t workspace_size_limit = 0;
368 369
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
370
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
371 372
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
373 374
    }

375 376 377 378 379 380 381 382 383 384 385
    Tensor cudnn_workspace;
    void* cudnn_workspace_ptr = nullptr;
    if ((input_data || filter_data) && exhaustive_search) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_limit)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }

Q
qingqing01 已提交
386 387
    // TODO(dangqingqing) simplify the following code by SearchAlgorithm in
    // conv_cudnn_helper.h
388 389
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
Q
QI JUN 已提交
390
    auto handle = dev_ctx.cudnn_handle();
391 392

    bool has_got_bwd_data_ws_size = false;
武毅 已提交
393
    if (input_grad) {
394 395
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
396 397 398 399 400
        AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>& data_algo_cache =
            ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>(
                0);

        data_algo = data_algo_cache.GetAlgorithm(
401 402 403 404 405
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdDataAlgoPerf_t,
                         kNUM_CUDNN_BWD_DATA_ALGS>
                  data_perf_stat;
406 407 408 409 410 411 412 413 414

              CUDNN_ENFORCE(platform::dynload::
                                cudnnFindConvolutionBackwardDataAlgorithmEx(
                                    handle, cudnn_filter_desc, filter_data,
                                    cudnn_output_grad_desc, output_grad_data,
                                    cudnn_conv_desc, cudnn_input_desc,
                                    input_grad_data, kNUM_CUDNN_BWD_DATA_ALGS,
                                    &returned_algo_count, data_perf_stat.data(),
                                    cudnn_workspace_ptr, workspace_size_limit));
415 416 417 418 419 420 421 422 423 424 425 426 427

              VLOG(3) << "Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = data_perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return data_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward data algo " << data_algo;
      } else if (FLAGS_cudnn_deterministic) {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      } else {
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
#if CUDNN_VERSION >= 7001
        using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
        int perf_count;
        int best_algo_idx = 0;
        std::unique_ptr<perf_t[]> perf_results(
            new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
        CUDNN_ENFORCE(
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc, kNUM_CUDNN_BWD_DATA_ALGS, &perf_count,
                perf_results.get()));
        data_algo = (perf_results.get())[best_algo_idx].algo;
        int stride_dim = input->dims().size() - 2;
        bool blacklist =
            std::any_of(strides.begin(), strides.begin() + stride_dim,
                        [=](int n) { return n != 1; });
        if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                              perf_results[best_algo_idx].algo) ==
                              CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                          static_cast<cudnnConvolutionBwdDataAlgo_t>(
                              perf_results[best_algo_idx].algo) ==
                              CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
          data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
        }
458

W
Wu Yi 已提交
459
        CUDNN_ENFORCE(
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
            platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
                handle, cudnn_filter_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
        auto new_workspace_size = std::max(workspace_size_in_bytes, tmp_size);

        if (new_workspace_size > workspace_size_limit) {
          VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                     "the workspace size request("
                  << new_workspace_size << ") exceeds the limit("
                  << workspace_size_limit << ")";
#endif
          CUDNN_ENFORCE(
              platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                  handle, cudnn_filter_desc,
                  // dyDesc: Handle to the previously initialized input
                  // differential
                  // tensor descriptor.
                  cudnn_output_grad_desc, cudnn_conv_desc,
                  // dxDesc: Handle to the previously initialized output tensor
                  // descriptor.
                  cudnn_input_desc,
                  CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                  workspace_size_limit, &data_algo));
#if CUDNN_VERSION >= 7001
        } else {
          workspace_size_in_bytes = new_workspace_size;
          has_got_bwd_data_ws_size = true;
        }
488
#endif
C
chengduoZH 已提交
489
      }
490 491 492 493 494 495 496 497

      if (!has_got_bwd_data_ws_size) {
        CUDNN_ENFORCE(
            platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
                handle, cudnn_filter_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
        workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
      }
武毅 已提交
498 499
    }

500
    bool has_got_bwd_filter_ws_size = false;
武毅 已提交
501
    if (filter_grad) {
502 503
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
504 505 506 507 508
        AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>& f_algo_cache =
            ctx.GetKernelConfig<
                AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>(1);

        filter_algo = f_algo_cache.GetAlgorithm(
509 510 511 512 513
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdFilterAlgoPerf_t,
                         kNUM_CUDNN_BWD_FILTER_ALGS>
                  filter_perf_stat;
514 515 516 517 518 519 520 521 522 523

              CUDNN_ENFORCE(
                  platform::dynload::
                      cudnnFindConvolutionBackwardFilterAlgorithmEx(
                          handle, cudnn_input_desc, input_data,
                          cudnn_output_grad_desc, output_grad_data,
                          cudnn_conv_desc, cudnn_filter_desc, filter_grad_data,
                          kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                          filter_perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
524 525 526 527 528 529
              return filter_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward filter algo " << filter_algo;
      } else if (FLAGS_cudnn_deterministic) {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      } else {
530 531 532 533 534 535 536 537 538 539 540 541 542
#if CUDNN_VERSION >= 7001
        using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
        int perf_count;
        int best_algo_idx = 0;
        std::unique_ptr<perf_t[]> perf_results(
            new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);

        CUDNN_ENFORCE(
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc, kNUM_CUDNN_BWD_FILTER_ALGS,
                &perf_count, perf_results.get()));
        filter_algo = (perf_results.get())[best_algo_idx].algo;
543

W
Wu Yi 已提交
544
        CUDNN_ENFORCE(
545
            platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
C
chengduoZH 已提交
546
                handle, cudnn_input_desc, cudnn_output_grad_desc,
547 548 549 550 551 552 553 554
                cudnn_conv_desc, cudnn_filter_desc, filter_algo, &tmp_size));
        auto new_workspace_size = std::max(workspace_size_in_bytes, tmp_size);

        if (new_workspace_size > workspace_size_limit) {
          VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                     "the workspace size request("
                  << new_workspace_size << ") exceeds the limit("
                  << workspace_size_limit << ")";
555
#endif
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
          CUDNN_ENFORCE(
              platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                  handle, cudnn_input_desc, cudnn_output_grad_desc,
                  cudnn_conv_desc, cudnn_filter_desc,
                  CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                  workspace_size_limit, &filter_algo));
#if CUDNN_VERSION >= 7001
        } else {
          workspace_size_in_bytes = new_workspace_size;
          has_got_bwd_filter_ws_size = true;
        }
#endif
      }

      if (!has_got_bwd_filter_ws_size) {
        CUDNN_ENFORCE(
            platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc, filter_algo, &tmp_size));
        workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
C
chengduoZH 已提交
576
      }
武毅 已提交
577
    }
578

579 580 581
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

582 583 584 585 586 587 588 589
    // ------------------- cudnn conv workspace ---------------------
    if (!cudnn_workspace_ptr) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_in_bytes)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
Z
Zeng Jinle 已提交
590 591 592
      VLOG(2) << "Cudnn workspace size bwd: "
              << static_cast<double>(workspace_size_in_bytes) / (1 << 20)
              << " MB";
593 594
    }

武毅 已提交
595
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
596
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
597 598
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
599 600
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
601
      for (int i = 0; i < groups; i++) {
602 603 604 605 606 607
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
            cudnn_workspace_ptr, workspace_size_in_bytes, &beta,
            cudnn_input_desc, input_grad_data + i * group_offset_in));
武毅 已提交
608 609 610 611 612
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
613
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
614
      for (int i = 0; i < groups; i++) {
615 616 617 618 619 620
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace_ptr,
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
            filter_grad_data + i * group_offset_filter));
武毅 已提交
621 622 623 624 625
      }
    }
  }
};

Q
qingqing01 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv(ddI, W) + conv(I, ddW)
 * dW = conv_bp_filter(ddI, dO)
 * dI = conv_bp_data(ddW, dO)
 */
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use CUDAPlace.");
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");

    const T* x = X->data<T>();
    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;

    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    const std::vector<int>& paddings = ctx.Attr<std::vector<int>>("paddings");
    const std::vector<int>& dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
    if (exhaustive_search && deterministic) {
      PADDLE_THROW(
翟飞跃 已提交
668
          "Can't set exhaustive_search True and "
Q
qingqing01 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
          "FLAGS_cudnn_deterministic True at same time.");
    }

    int iwo_group = groups;
    int c_group = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_group = 1;
    c_group = groups;
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

    ConvArgs args1{ddX, W, ddO, strides, paddings, dilations};
    ConvArgs args2{X, ddW, ddO, strides, paddings, dilations};
    ConvArgs args3{ddX, dW, dO, strides, paddings, dilations};
    ConvArgs args4{dX, ddW, dO, strides, paddings, dilations};

    cudnnConvolutionFwdAlgo_t fwd_algo1 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t fwd_algo2 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);

    auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;
    if (ddO) {
      ddy = ddO->mutable_data<T>(ctx.GetPlace());
      args1.handle = handle;
      args1.idesc.set(*ddX, iwo_group);
      args1.wdesc.set(*W, layout, iwo_group);
      args1.odesc.set(*ddO, iwo_group);
      args1.cdesc.set(dtype, paddings, strides, dilations, c_group);

      using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
      fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, 0, ctx);
      workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(*X, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(*ddO, iwo_group);
        args2.cdesc.set(dtype, paddings, strides, dilations, c_group);

        using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, 0, ctx);
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, fwd_algo2));
      }
    }

    if (dW) {
      dw = dW->mutable_data<T>(ctx.GetPlace());
      args3.handle = handle;
      args3.idesc.set(*ddX, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);
      args3.odesc.set(*dO, iwo_group);
      args3.cdesc.set(dtype, paddings, strides, dilations, c_group);

      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo =
          search3::Find<T>(args3, exhaustive_search, deterministic, 1, ctx);
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
    }

    if (ddW && dX) {
      dx = dX->mutable_data<T>(ctx.GetPlace());
      args4.handle = handle;
      args4.idesc.set(*dX, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(*dO, iwo_group);
      args4.cdesc.set(dtype, paddings, strides, dilations, c_group);

      using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
      data_algo =
          search4::Find<T>(args4, exhaustive_search, deterministic, 2, ctx);
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
    }

    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(X->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w);
    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(dO->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h, &o_w);

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
    int group_offset_filter = W->numel() / groups;

    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      ddx = ddX->data<T>();
      for (int i = 0; i < groups; i++) {
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
                  handle, &alpha, args1.idesc.desc(), ddx + i * group_offset_in,
                  args1.wdesc.desc(), w + i * group_offset_filter,
                  args1.cdesc.desc(), fwd_algo1, workspace_ptr, workspace_size,
                  &beta, args1.odesc.desc(), ddy + i * group_offset_out));
            },
            workspace_size);
      }
      if (ddW) {
        for (int i = 0; i < groups; i++) {
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
                    handle, &alpha, args2.idesc.desc(), x + i * group_offset_in,
                    args2.wdesc.desc(), ddw + i * group_offset_filter,
                    args2.cdesc.desc(), fwd_algo2, workspace_ptr,
                    workspace_size, &alpha, args2.odesc.desc(),
                    ddy + i * group_offset_out));
              },
              workspace_size);
        }
      }
    }

    if (dW) {
      ddx = ddX->data<T>();
      for (int i = 0; i < groups; i++) {
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
                  handle, &alpha, args3.idesc.desc(), ddx + i * group_offset_in,
                  args3.odesc.desc(), dy + i * group_offset_out,
                  args3.cdesc.desc(), filter_algo, workspace_ptr,
                  workspace_size, &beta, args3.wdesc.desc(),
                  dw + i * group_offset_filter));
            },
            workspace_size);
      }
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
      for (int i = 0; i < groups; i++) {
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
                  handle, &alpha, args4.wdesc.desc(),
                  ddw + i * group_offset_filter, args4.odesc.desc(),
                  dy + i * group_offset_out, args4.cdesc.desc(), data_algo,
                  workspace_ptr, workspace_size, &beta, args4.idesc.desc(),
                  dx + i * group_offset_in));
            },
            workspace_size);
      }
    }
  }
};

武毅 已提交
832 833 834
}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
835 836
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
837
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
838
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
839
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
840
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
841
                   paddle::operators::CUDNNConvGradOpKernel<float>,
C
chengduo 已提交
842 843
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
Q
qingqing01 已提交
844 845 846 847 848
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
849

K
Kexin Zhao 已提交
850
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
851
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
852 853
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
854
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
855
                   paddle::operators::CUDNNConvGradOpKernel<float>,
856
                   paddle::operators::CUDNNConvGradOpKernel<double>);