conv_cudnn_op.cu.cc 23.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
22
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
K
Kexin Zhao 已提交
23
#include "paddle/fluid/platform/float16.h"
24
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
25

Y
Yu Yang 已提交
26
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
27 28
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
29
            "true, the algorithm is deterministic.");
30 31
DEFINE_uint64(conv_workspace_size_limit,
              paddle::platform::kDefaultConvWorkspaceSizeLimitMB,
32 33 34 35
              "cuDNN convolution workspace limit in MB unit.");
DEFINE_bool(cudnn_exhaustive_search, false,
            "Whether enable exhaustive search for cuDNN convolution or "
            "not, defalut is False.");
C
chengduoZH 已提交
36

武毅 已提交
37 38 39 40 41 42 43 44
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
45 46
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
47
using framework::AlgorithmsCache;
武毅 已提交
48 49

template <typename T>
50
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
51 52
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
53
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
54
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
55
                   "It must use CUDAPlace.");
武毅 已提交
56 57 58 59 60 61 62 63
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
64 65
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
66 67
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
武毅 已提交
68 69 70 71 72 73 74 75 76 77 78

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
79 80 81 82 83 84 85
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
86
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
87 88 89
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
90
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
91 92 93
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
94

C
chengduoZH 已提交
95 96 97 98 99 100
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
101 102

    int input_channels = input->dims()[1];
武毅 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
124

武毅 已提交
125 126
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
127
    int group_offset_out =
武毅 已提交
128
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
129 130 131
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
132
    size_t workspace_size_limit = 0;
133 134
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
135
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
136 137
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
138
    }
139

武毅 已提交
140 141
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
142
    auto handle = dev_ctx.cudnn_handle();
143

144
    bool half_float = false;
145 146 147 148 149 150 151 152 153
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
154
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
155
      half_float = true;
M
minqiyang 已提交
156
      VLOG(5) << "use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
157
    } else {
158 159
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
M
minqiyang 已提交
160
      VLOG(5) << "NOT use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
161
    }
162
#endif
163 164
    Tensor cudnn_workspace;
    void* cudnn_workspace_ptr = nullptr;
K
Kexin Zhao 已提交
165

166 167 168 169 170 171 172 173 174
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
    if ((!exhaustive_search) && (!half_float)) {
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
    } else if (exhaustive_search && (!half_float)) {
175 176
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>(0);
177 178 179 180 181 182 183
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_limit)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());

184
      algo = algo_cache.GetAlgorithm(
185 186 187 188
          x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
            int returned_algo_count;
            std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
                fwd_perf_stat;
189 190 191 192 193 194 195 196

            CUDNN_ENFORCE(
                platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                    handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                    filter_data, cudnn_conv_desc, cudnn_output_desc,
                    output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                    fwd_perf_stat.data(), cudnn_workspace_ptr,
                    workspace_size_limit));
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

            VLOG(3) << "Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = fwd_perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return fwd_perf_stat[0].algo;
          });
      VLOG(3) << "choose algo " << algo;
    } else {
      PADDLE_ENFORCE(half_float,
                     "cuDNN exhaustive search doesn't support half float.");
    }

武毅 已提交
212
    // get workspace size able to allocate
W
Wu Yi 已提交
213
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
214 215
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
216 217 218 219 220
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

221 222 223 224 225 226 227 228 229
    // Allocate on GPU memory
    if (!cudnn_workspace_ptr) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_in_bytes)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }
武毅 已提交
230
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
231
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
232
    for (int i = 0; i < groups; i++) {
233 234 235 236 237
      CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace_ptr, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
武毅 已提交
238 239 240 241 242
    }
  }
};

template <typename T>
243
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
244 245
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
246
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
247
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
248
                   "It must use CUDAPlace.");
武毅 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
263 264
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
265 266 267 268 269 270 271
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    if (exhaustive_search && FLAGS_cudnn_deterministic) {
      PADDLE_THROW(
          "Cann't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }
武毅 已提交
272 273 274 275 276 277 278 279 280

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
281 282 283 284 285 286 287
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
288
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
289 290 291
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
292
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
293 294 295
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
296

C
chengduoZH 已提交
297 298
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
299
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
300 301 302 303
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Enable Tensor Core for cudnn backward
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "use cudnn_tensor_op_math for backward";
    } else {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
      VLOG(5) << "NOT use cudnn_tensor_op_math for backward";
    }
#endif

武毅 已提交
320
    int input_channels = input->dims()[1];
武毅 已提交
321 322 323 324 325 326 327 328 329 330 331
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
332
    int output_grad_channels = filter->dims()[0];
武毅 已提交
333 334 335 336 337 338 339 340 341 342
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
343

武毅 已提交
344 345 346 347
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
348 349 350 351 352
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
353
    size_t workspace_size_limit = 0;
354 355
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
356
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
357 358
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
359 360
    }

361 362 363 364 365 366 367 368 369 370 371
    Tensor cudnn_workspace;
    void* cudnn_workspace_ptr = nullptr;
    if ((input_data || filter_data) && exhaustive_search) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_limit)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }

372 373
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
Q
QI JUN 已提交
374
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
375
    if (input_grad) {
376 377
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
378 379 380 381 382
        AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>& data_algo_cache =
            ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>(
                0);

        data_algo = data_algo_cache.GetAlgorithm(
383 384 385 386 387
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdDataAlgoPerf_t,
                         kNUM_CUDNN_BWD_DATA_ALGS>
                  data_perf_stat;
388 389 390 391 392 393 394 395 396

              CUDNN_ENFORCE(platform::dynload::
                                cudnnFindConvolutionBackwardDataAlgorithmEx(
                                    handle, cudnn_filter_desc, filter_data,
                                    cudnn_output_grad_desc, output_grad_data,
                                    cudnn_conv_desc, cudnn_input_desc,
                                    input_grad_data, kNUM_CUDNN_BWD_DATA_ALGS,
                                    &returned_algo_count, data_perf_stat.data(),
                                    cudnn_workspace_ptr, workspace_size_limit));
397 398 399 400 401 402 403 404 405 406 407 408 409

              VLOG(3) << "Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = data_perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return data_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward data algo " << data_algo;
      } else if (FLAGS_cudnn_deterministic) {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      } else {
W
Wu Yi 已提交
410
        CUDNN_ENFORCE(
C
chengduoZH 已提交
411 412 413 414 415 416 417 418 419 420 421 422
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
      }
W
Wu Yi 已提交
423
      CUDNN_ENFORCE(
武毅 已提交
424 425
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
426
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
427 428 429 430
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
431 432
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
433 434 435 436 437
        AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>& f_algo_cache =
            ctx.GetKernelConfig<
                AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>(1);

        filter_algo = f_algo_cache.GetAlgorithm(
438 439 440 441 442
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdFilterAlgoPerf_t,
                         kNUM_CUDNN_BWD_FILTER_ALGS>
                  filter_perf_stat;
443 444 445 446 447 448 449 450 451 452

              CUDNN_ENFORCE(
                  platform::dynload::
                      cudnnFindConvolutionBackwardFilterAlgorithmEx(
                          handle, cudnn_input_desc, input_data,
                          cudnn_output_grad_desc, output_grad_data,
                          cudnn_conv_desc, cudnn_filter_desc, filter_grad_data,
                          kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                          filter_perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
453 454 455 456 457 458
              return filter_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward filter algo " << filter_algo;
      } else if (FLAGS_cudnn_deterministic) {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      } else {
W
Wu Yi 已提交
459
        CUDNN_ENFORCE(
C
chengduoZH 已提交
460 461 462 463 464 465
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
      }
W
Wu Yi 已提交
466
      CUDNN_ENFORCE(
武毅 已提交
467 468 469 470 471
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
472

473 474 475 476 477 478 479 480 481 482
    // ------------------- cudnn conv workspace ---------------------
    if (!cudnn_workspace_ptr) {
      cudnn_workspace =
          ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
              framework::make_ddim(
                  {static_cast<int64_t>(workspace_size_in_bytes)}),
              dev_ctx);
      cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
    }

武毅 已提交
483
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
484
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
485 486
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
487 488
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
489
      for (int i = 0; i < groups; i++) {
490 491 492 493 494 495
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
            cudnn_workspace_ptr, workspace_size_in_bytes, &beta,
            cudnn_input_desc, input_grad_data + i * group_offset_in));
武毅 已提交
496 497 498 499 500
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
501
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
502
      for (int i = 0; i < groups; i++) {
503 504 505 506 507 508
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace_ptr,
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
            filter_grad_data + i * group_offset_filter));
武毅 已提交
509 510 511 512 513 514 515 516
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
517 518
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
519
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
520
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
521
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
522
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
523
                   paddle::operators::CUDNNConvGradOpKernel<float>,
C
chengduo 已提交
524 525
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
526

K
Kexin Zhao 已提交
527
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
528
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
529 530
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
531
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
532
                   paddle::operators::CUDNNConvGradOpKernel<float>,
533
                   paddle::operators::CUDNNConvGradOpKernel<double>);