op_test.py 85.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31 32
import paddle.fluid as fluid
import paddle.fluid.core as core
33
from paddle.fluid.framework import _in_eager_mode
34
from paddle.fluid.framework import _test_eager_guard
35 36 37
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
38
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
39 40 41 42 43
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
44
from paddle.fluid import unique_name
45 46 47 48 49 50 51
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
52 53


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


96 97 98 99 100 101 102 103
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


104 105 106 107
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
108
    for i in six.moves.xrange(len(prob)):
109 110 111 112
        prob[i] /= prob_sum[i]
    return prob


113 114
def get_numeric_gradient(place,
                         scope,
115 116 117
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
118
                         output_names,
119
                         delta=0.005,
C
chengduo 已提交
120
                         in_place=False):
Y
Yu Yang 已提交
121
    # FIXME: change this method by compile time concepts
122
    set_input(scope, op, inputs, place)
123 124

    def product(dim):
M
minqiyang 已提交
125
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
126 127

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
128 129
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
130
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
131
        tensor_to_check_dtype = np.float32
132
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
133
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
134 135 136 137
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
138 139
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
140 141 142 143
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
144
    else:
145 146
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
147

C
chengduo 已提交
148 149 150 151
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
152
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
153 154 155
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
156 157 158
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
159 160
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

161 162 163
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
164 165 166 167
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
168 169 170
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
171 172 173 174
            return struct.unpack('<f',
                                 struct.pack('<I',
                                             np.uint32(numpy_tensor[i])
                                             << np.uint32(16)))[0]
D
dzhwinter 已提交
175
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
176
            return tensor._get_float_element(i)
177
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
178
            return tensor._get_double_element(i)
179 180 181
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
182 183

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
184 185 186 187 188
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
189
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
190
            tensor.set(numpy_tensor, place)
191 192 193 194 195 196 197
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
198
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
199
            tensor._set_float_element(i, e)
200
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
201
            tensor._set_double_element(i, e)
202 203 204
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
205

206 207
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
208
    for i in six.moves.xrange(tensor_size):
209
        if in_place:
210
            set_input(scope, op, inputs, place)
211 212

        # get one input element throw it's index i.
213
        origin = __get_elem__(tensor_to_check, i)
214 215
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
216
        __set_elem__(tensor_to_check, i, x_pos)
217 218 219
        y_pos = get_output()

        if in_place:
220
            set_input(scope, op, inputs, place)
221 222

        x_neg = origin - delta
223
        __set_elem__(tensor_to_check, i, x_neg)
224 225
        y_neg = get_output()

226
        __set_elem__(tensor_to_check, i, origin)
227 228
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
229
    return gradient_flat.reshape(tensor_to_check.shape())
230 231


232 233
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
234

235
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
236
       cases that do not need to do check_grad. This decorator is used to skip the
237
       check_grad of the above cases.
C
cc 已提交
238 239

       Note: the execution of unit test will not be skipped. It just avoids check_grad
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


256 257 258 259
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


260 261 262 263
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

264 265 266
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
267
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
268

269 270 271
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
272 273


274 275 276
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
277
        lambda x: struct.unpack('<f', struct.pack('<I', np.uint32(x) << np.uint32(16)))[0],
278 279
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
280 281


282
class OpTest(unittest.TestCase):
283 284 285 286 287
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
288
        cls.call_once = False
289
        cls.dtype = None
290
        cls.outputs = {}
291
        cls.input_shape_is_large = True
292 293 294 295

        np.random.seed(123)
        random.seed(124)

296 297 298 299
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
300

301 302
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
303
        """Restore random seeds"""
304 305 306
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

307 308
        _set_use_system_allocator(cls._use_system_allocator)

309 310 311 312
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
313
                if is_mkldnn_op_test():
314 315 316 317 318 319 320 321
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

322 323 324
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
325
        def is_mkldnn_op_test():
326
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
327

328 329 330
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

331 332 333
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

334 335 336
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

337 338
        if not hasattr(cls, "op_type"):
            raise AssertionError(
339 340
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
341

J
juncaipeng 已提交
342 343
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
344
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
345
            if cls.dtype is None or \
346 347
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
348 349 350 351
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

352
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
353 354
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
355
                and not hasattr(cls, 'exist_fp64_check_grad') \
356
                and not is_xpu_op_test() \
357
                and not is_mkldnn_op_test() \
358
                and not is_rocm_op_test() \
359 360
                and not is_npu_op_test() \
                and not is_mlu_op_test():
J
juncaipeng 已提交
361 362 363 364
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

365
            if not cls.input_shape_is_large \
366 367 368 369
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
370

371 372 373 374 375
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

376
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
377 378
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
379
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
380 381 382
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
383
                getattr(self, 'mkldnn_data_type') == "bfloat16") or (
Y
Yiqun Liu 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
397

398
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
399 400 401 402
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
403 404 405
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
428 429
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
430 431
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
432 433 434
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
435 436 437
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
438
            if dtype in input_dtype_set:
J
juncaipeng 已提交
439 440
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
441
        # save input dtype in class attr
442
        self.__class__.dtype = self.dtype
443

Y
Yiqun Liu 已提交
444 445 446 447 448 449 450 451
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
452 453 454 455 456 457
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
458
                    if isinstance(np_value, tuple):
459
                        tensor.set(np_value[0], place)
460
                        tensor.set_recursive_sequence_lengths(np_value[1])
461
                    else:
462
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
463 464 465 466
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
467
                    tensor.set(self.inputs[var_name][0], place)
468 469
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
470
                else:
471
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
472 473 474
                feed_map[var_name] = tensor
        return feed_map

475
    def _append_ops(self, block):
J
juncaipeng 已提交
476
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
477
        if self.is_mkldnn_op():
478
            self.__class__.use_mkldnn = True
C
cc 已提交
479

Y
Yiqun Liu 已提交
480
        if self.is_xpu_op():
481 482
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
483
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
484
        "infer datatype from inputs and outputs for this test case"
485 486 487 488 489 490
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
491 492 493 494
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
495 496 497 498 499 500 501 502 503

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
504 505 506 507
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
508
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
509
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
510 511
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
512

513 514
        return op

515 516
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
517
        for name, value in six.iteritems(numpy_inputs):
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
537 538 539 540
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
541
            v = fluid.dygraph.base.to_variable(value=data)
542
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
543 544
            return v
        else:
L
lujun 已提交
545
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
546

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

601 602 603 604 605 606 607 608 609 610 611 612 613
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
614

615 616
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
617 618 619
                    if _in_eager_mode():
                        v.retain_grads()

620
                if has_lod:
621
                    v.value().get_tensor().set_recursive_sequence_lengths(
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
682
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
683
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
684
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
685 686
            block = fluid.default_main_program().global_block()

687
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
688

689 690 691
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
692
            # prepare output variable
693 694 695 696 697 698 699 700 701
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
702 703 704 705
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
706
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
707
            return outputs
708

709 710 711 712 713 714
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
715
                     for_inplace_test=None):
716 717
        program = Program()
        block = program.global_block()
718
        op = self._append_ops(block)
719 720 721 722 723

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

724
        if for_inplace_test:
C
cc 已提交
725 726
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
727 728
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
729 730
            for out_name in op.output_arg_names:
                var = block.var(out_name)
731 732
                if 0 in var.shape:
                    var.persistable = True
733
        original_program = program
734 735
        if parallel:
            use_cuda = False
736
            if isinstance(place, fluid.CUDAPlace):
737
                use_cuda = True
738 739 740
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
741 742 743 744
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
745
            for var_name, var in six.iteritems(outputs):
746 747
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
748 749
                if isinstance(var, list):
                    for v in var:
750
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
751
                else:
752
                    fetch_list.append(var.name)
753 754 755 756
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
757 758 759 760 761 762 763 764 765

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

766
        executor = Executor(place)
767 768 769 770
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
771 772
        self.op = op
        self.program = original_program
773 774 775 776
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
777

778 779 780 781 782 783 784 785 786
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
787
            place (CPUPlace | CUDAPlace): The place where the op runs.
788 789 790 791 792 793 794 795 796 797
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
798
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
799 800 801
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
802 803
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
804 805 806
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
807
                        expect_out, actual_out, atol=inplace_atol),
808 809
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
810 811
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
812 813
            else:
                self.assertTrue(
814
                    np.array_equal(expect_out, actual_out),
815 816
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
817 818
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
819 820 821 822 823 824 825 826

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
827
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
854 855
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
871
            place (CPUPlace | CUDAPlace): The place where the op runs.
872 873 874
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
875
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
907

908
        Args:
C
cc 已提交
909 910
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
911
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
912

913 914 915 916 917 918 919 920 921 922 923 924 925 926
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
927
                # get grad_op_desc
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
951
        """Check the inplace correctness of given op (self.op_type).
952
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
953

954
        Args:
C
cc 已提交
955
            place (CPUPlace | CUDAPlace): The place where the op runs.
956 957 958 959
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
960 961
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
962 963
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
964 965 966 967 968 969 970 971 972 973
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
974
        # compare expect_outs and actual_outs
975 976 977 978 979 980
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
981 982 983 984 985 986 987 988 989 990 991 992 993
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
994
            place (CPUPlace | CUDAPlace): The place where the op runs.
995 996 997 998 999 1000 1001 1002 1003
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1004
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
1005
                                                                  set(), [])
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1031
        """Check the inplace correctness of given grad_op_desc.
1032 1033 1034 1035 1036 1037

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1038
            place (CPUPlace | CUDAPlace): The place where the op runs.
1039 1040 1041 1042 1043 1044
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1045 1046
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1070
            place (CPUPlace | CUDAPlace): The place where the op runs.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1086 1087
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1101 1102
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1103
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1116
                else:
1117 1118
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1119

1120 1121
    def check_output_with_place(self,
                                place,
1122
                                atol=0,
1123
                                no_check_set=None,
M
minqiyang 已提交
1124
                                equal_nan=False,
1125
                                check_dygraph=True,
1126 1127
                                inplace_atol=None,
                                check_eager=False):
1128 1129 1130 1131 1132
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1133
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1134 1135
            if self.is_mkldnn_op():
                check_dygraph = False
1136
                check_eager = False
Y
Yiqun Liu 已提交
1137 1138 1139 1140 1141
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1142
            else:
Y
Yiqun Liu 已提交
1143
                atol = 1e-2
1144

1145 1146 1147 1148
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
1149

L
lujun 已提交
1150 1151
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
1152
                place, no_check_set=no_check_set)
1153 1154 1155 1156
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_outs = self._calc_dygraph_output(
                    place, no_check_set=no_check_set)
1157
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
1158

Y
Yang Yang(Tony) 已提交
1159
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
1160 1161
            if out_name not in self.outputs:
                continue
1162 1163
            if no_check_set is not None and out_name in no_check_set:
                continue
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
1177 1178
            def find_actual(target_name, fetch_list):
                found = [
1179 1180
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
1181 1182 1183 1184 1185 1186
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1187 1188
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1189 1190 1191
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1192 1193
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1194
                    if check_dygraph:
1195 1196
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1197 1198
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
1199 1200 1201 1202 1203 1204 1205
                    if check_eager:
                        with _test_eager_guard():
                            eager_imperative_actual = find_imperative_actual(
                                sub_out_name, eager_dygraph_outs, place)
                            eager_imperative_actual_t = eager_imperative_actual.numpy(
                            )

Y
Yang Yang(Tony) 已提交
1206
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1207 1208
                    actual = outs[idx]
                    actual_t = np.array(actual)
1209 1210
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1211 1212
                    self.assertTrue(
                        np.allclose(
1213
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1214 1215
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1216
                    if check_dygraph:
M
minqiyang 已提交
1217 1218 1219 1220 1221 1222 1223
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1224
                            str(place) + " in dygraph mode")
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
                    if check_eager:
                        with _test_eager_guard():
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    equal_nan=equal_nan),
                                "Output (" + sub_out_name + ") has diff at " +
                                str(place) + " in eager dygraph mode")
1235 1236
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1237 1238
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1239
                            ") has different lod at " + str(place))
1240 1241
                        if check_dygraph:
                            self.assertListEqual(
1242
                                imperative_actual.value().get_tensor()
1243 1244 1245 1246
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1247 1248 1249 1250 1251 1252 1253 1254
                        if check_eager:
                            with _test_eager_guard():
                                self.assertListEqual(
                                    eager_imperative_actual.value().get_tensor()
                                    .recursive_sequence_lengths(), expect[1],
                                    "Output (" + out_name +
                                    ") has different lod at " + str(place) +
                                    " in eager dygraph mode")
1255
            else:
L
lujun 已提交
1256
                if check_dygraph:
1257 1258
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1259 1260
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
1261 1262 1263 1264 1265 1266 1267
                if check_eager:
                    with _test_eager_guard():
                        eager_imperative_actual = find_imperative_actual(
                            out_name, eager_dygraph_outs, place)
                        eager_imperative_actual_t = eager_imperative_actual.numpy(
                        )

Y
Yang Yang(Tony) 已提交
1268
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1269 1270
                actual = outs[idx]
                actual_t = np.array(actual)
1271

1272
                expect = self.outputs[out_name]
1273
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1274

Y
Yiqun Liu 已提交
1275
                # np.uint16 represents bfloat16
1276 1277 1278
                if actual_t.dtype == np.uint16 and expect_t.dtype in [
                        np.float32, np.float64
                ]:
1279
                    actual_t = convert_uint16_to_float(actual_t)
W
wuhuanzhou 已提交
1280 1281 1282
                    rtol = 1.e-2
                else:
                    rtol = 1.e-5
1283

1284 1285 1286 1287
                if expect_t.dtype == np.uint16 and actual_t.dtype == np.uint16:
                    expect_t = convert_uint16_to_float(expect_t)
                    actual_t = convert_uint16_to_float(actual_t)
                    atol = max(atol, 0.03)
Y
Yiqun Liu 已提交
1288

1289 1290 1291 1292 1293
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_t.size == 0:
                    self.assertTrue(actual_t.size == 0)

1294 1295
                self.assertTrue(
                    np.allclose(
W
wuhuanzhou 已提交
1296 1297 1298
                        actual_t,
                        expect_t,
                        atol=atol,
Y
Yiqun Liu 已提交
1299
                        rtol=rtol,
W
wuhuanzhou 已提交
1300
                        equal_nan=equal_nan),
E
emailweixu 已提交
1301
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1302
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1303
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1304
                if check_dygraph:
Y
Yiqun Liu 已提交
1305 1306 1307 1308 1309 1310
                    if self.is_bfloat16_op():
                        if imperative_actual_t.dtype == np.uint16:
                            imperative_actual_t = convert_uint16_to_float(
                                imperative_actual_t)
                        if expect_t.dtype == np.uint16:
                            expect_t = convert_uint16_to_float(expect_t)
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
Y
Yiqun Liu 已提交
1322
                                rtol=rtol,
1323 1324 1325 1326 1327
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
                if check_eager:
                    with _test_eager_guard():
                        if self.is_bfloat16_op():
                            if eager_imperative_actual_t.dtype == np.uint16:
                                eager_imperative_actual_t = convert_uint16_to_float(
                                    eager_imperative_actual_t)
                            if expect_t.dtype == np.uint16:
                                expect_t = convert_uint16_to_float(expect_t)
                        if six.moves.reduce(lambda x, y: x * y,
                                            eager_imperative_actual_t.shape,
                                            1) == 0 and six.moves.reduce(
                                                lambda x, y: x * y,
                                                expect_t.shape, 1) == 0:
                            pass
                        else:
                            self.assertTrue(
                                np.allclose(
                                    eager_imperative_actual_t,
                                    expect_t,
                                    atol=atol,
                                    rtol=rtol,
                                    equal_nan=equal_nan),
                                "Output (" + out_name + ") has diff at " +
                                str(place) + "\nExpect " + str(expect_t) + "\n"
                                + "But Got" + str(eager_imperative_actual_t) +
                                " in class " + self.__class__.__name__)
1354
                if isinstance(expect, tuple):
1355 1356
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1357
                                         ") has different lod at " + str(place))
L
lujun 已提交
1358
                    if check_dygraph:
M
minqiyang 已提交
1359
                        self.assertListEqual(
1360
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1361 1362
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
1363 1364 1365 1366 1367 1368 1369 1370 1371
                            str(place) + " in eager dygraph mode")
                    if check_eager:
                        with _test_eager_guard():
                            self.assertListEqual(
                                eager_imperative_actual.value().get_tensor()
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in eager dygraph mode")
1372

C
cc 已提交
1373
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1374 1375
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1376
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1377 1378 1379
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1380 1381
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1382 1383
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1384
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1385
        # No effect on original OpTest
1386
        # Currently not support ParallelExecutor on XPUPlace.
1387
        if not paddle.is_compiled_with_xpu(
1388 1389
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1390 1391
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1392

1393 1394 1395
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1443
    def _get_places(self):
D
dzhwinter 已提交
1444 1445 1446 1447 1448 1449
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1450 1451
                else:
                    return []
D
dzhwinter 已提交
1452 1453
            else:
                return []
1454
        places = [fluid.CPUPlace()]
1455 1456 1457
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1458
            places.append(core.CUDAPlace(0))
1459 1460
        return places

M
minqiyang 已提交
1461 1462 1463 1464
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1465
                     check_dygraph=True,
1466 1467
                     inplace_atol=None,
                     check_eager=False):
1468
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1469
        if self.is_mkldnn_op():
1470
            self.__class__.use_mkldnn = True
C
cc 已提交
1471

Y
Yiqun Liu 已提交
1472
        if self.is_xpu_op():
1473 1474
            self.__class__.use_xpu = True

1475
        places = self._get_places()
Q
qijun 已提交
1476
        for place in places:
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1489 1490 1491
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1492
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1493
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1494

P
pangyoki 已提交
1495
    def check_output_customized(self, checker, custom_place=None):
1496
        places = self._get_places()
P
pangyoki 已提交
1497 1498
        if custom_place:
            places.append(custom_place)
1499 1500 1501
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1502
            outs.sort(key=len)
1503 1504
            checker(outs)

1505 1506 1507 1508 1509 1510
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1511 1512
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1513
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1514 1515 1516 1517 1518 1519
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1520
            abs_a = np.abs(a)
1521 1522 1523 1524 1525
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1526 1527
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1528 1529
            else:
                abs_a[abs_a < 1e-3] = 1
1530 1531 1532 1533 1534 1535

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1536 1537 1538
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1539
                    offset, a.flatten()[offset], b.flatten()[offset])
1540 1541 1542

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1543 1544 1545 1546 1547 1548 1549
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1550 1551
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1552
                   output_names,
1553
                   no_grad_set=None,
1554
                   numeric_grad_delta=0.005,
1555
                   in_place=False,
Q
Qiao Longfei 已提交
1556
                   max_relative_error=0.005,
1557
                   user_defined_grads=None,
1558
                   user_defined_grad_outputs=None,
1559 1560
                   check_dygraph=True,
                   check_eager=False):
1561
        self._check_grad_helper()
1562
        places = self._get_places()
1563
        for place in places:
1564
            self.check_grad_with_place(
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1576 1577 1578 1579 1580 1581 1582 1583 1584

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1585
                              user_defined_grads=None,
1586
                              user_defined_grad_outputs=None,
1587
                              check_dygraph=True,
1588 1589
                              numeric_place=None,
                              check_eager=False):
1590
        self.scope = core.Scope()
Q
qijun 已提交
1591
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1592
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1593
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1594

Y
Yiqun Liu 已提交
1595 1596
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1597
            check_dygraph = False
1598
            check_eager = False
1599

1600 1601 1602 1603
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1604

P
phlrain 已提交
1605 1606 1607
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1608 1609 1610 1611 1612 1613 1614

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1615 1616 1617 1618 1619 1620 1621
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1622

1623 1624 1625
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1626 1627
        if no_grad_set is None:
            no_grad_set = set()
1628 1629
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1630 1631 1632
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1633 1634
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1635

1636 1637 1638 1639 1640 1641 1642 1643
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1644 1645 1646
        if not type(output_names) is list:
            output_names = [output_names]

1647 1648 1649
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1650
        numeric_grads = user_defined_grads or [
1651
            get_numeric_gradient(
1652
                numeric_place,
1653 1654 1655 1656
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1657
                output_names,
1658
                delta=numeric_grad_delta,
C
chengduo 已提交
1659
                in_place=in_place) for input_to_check in inputs_to_check
1660
        ]
1661
        analytic_grads = self._get_gradient(inputs_to_check, place,
1662 1663
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1664 1665
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1666
        fp32_analytic_grads = []
1667 1668 1669
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1670
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1671 1672 1673 1674 1675 1676 1677
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1678
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1679 1680
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1681

D
Dun 已提交
1682 1683 1684
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1685

1686
        if check_dygraph:
1687 1688 1689
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
                no_grad_set)
1690 1691 1692 1693
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1694
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1695 1696
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1697 1698 1699 1700
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
        if check_eager:
            with _test_eager_guard():
                eager_dygraph_grad = self._get_dygraph_grad(
                    inputs_to_check, place, output_names,
                    user_defined_grad_outputs, no_grad_set)
                fp32_grads = []
                for grad in eager_dygraph_grad:
                    if grad.dtype == np.uint16:
                        grad = convert_uint16_to_float(grad)
                        max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                    fp32_grads.append(grad)
                eager_dygraph_grad = fp32_grads
                self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                      inputs_to_check, max_relative_error,
                                      "Gradient Check On %s" % str(place))

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
1730
                          user_defined_grad_outputs=None,
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
1751

1752 1753 1754 1755 1756 1757
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

1773 1774 1775 1776 1777
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
1812
                    block.append_op(
1813 1814 1815
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
1816
                        attrs=None)
1817
                    loss = block.create_var(
1818 1819 1820
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
1821 1822
                        stop_gradient=False,
                        shape=[1])
1823
                    block.append_op(
1824 1825 1826 1827
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
1828

1829
                loss.backward()
1830

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
C
chentianyu03 已提交
1843 1844 1845 1846
                # delete the inputs which no need to calculate grad
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
                if _in_eager_mode():
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
1862

Y
Yu Yang 已提交
1863 1864 1865 1866 1867
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1868
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1869 1870
        return tensor

K
Kexin Zhao 已提交
1871
    @staticmethod
K
Kexin Zhao 已提交
1872 1873
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1874

D
dzhwinter 已提交
1875 1876 1877 1878 1879 1880 1881 1882
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1883 1884 1885 1886 1887
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
1888
                      user_defined_grad_outputs=None,
1889
                      parallel=False):
Y
Yu Yang 已提交
1890
        prog = Program()
1891
        scope = core.Scope()
Y
Yu Yang 已提交
1892
        block = prog.global_block()
1893
        self._append_ops(block)
Y
Yu Yang 已提交
1894

1895
        inputs = self._get_inputs(block)
1896
        outputs = self._get_outputs(block)
1897
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1898

1899
        if user_defined_grad_outputs is None:
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
1940
            inputs = [inputs[name] for name in input_to_check if name in inputs]
1941 1942 1943 1944
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

1945 1946
        if parallel:
            use_cuda = False
1947
            if isinstance(place, fluid.CUDAPlace):
1948
                use_cuda = True
1949 1950 1951 1952
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1953 1954
        return list(
            map(np.array,
1955 1956 1957 1958 1959
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
1973 1974 1975 1976 1977 1978

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")