ops.py 6.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
P
peizhilin 已提交
16
import os
17
from .layer_function_generator import generate_layer_fn, generate_activation_fn
C
chengduo 已提交
18 19
from .. import core
from ..framework import convert_np_dtype_to_dtype_
Y
Yang Yu 已提交
20

21
__activations_noattr__ = [
22 23 24 25
    'sigmoid',
    'logsigmoid',
    'exp',
    'tanh',
26
    'atan',
27 28
    'tanh_shrink',
    'sqrt',
Z
zhoukunsheng 已提交
29
    'rsqrt',
30 31 32
    'abs',
    'ceil',
    'floor',
C
add cos  
chengduoZH 已提交
33
    'cos',
34 35
    'acos',
    'asin',
C
add sin  
chengduoZH 已提交
36
    'sin',
37 38 39 40 41
    'round',
    'reciprocal',
    'square',
    'softplus',
    'softsign',
Y
Yu Yang 已提交
42 43
]

X
Xin Pan 已提交
44
__all__ = []
Y
Yang Yu 已提交
45

Y
Yu Yang 已提交
46
for _OP in set(__all__):
47
    globals()[_OP] = generate_layer_fn(_OP)
Y
yuyang18 已提交
48

S
sneaxiy 已提交
49 50 51 52 53
# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

S
sneaxiy 已提交
54 55
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

56 57 58
__all__ += __activations_noattr__

for _OP in set(__activations_noattr__):
59
    globals()[_OP] = generate_activation_fn(_OP)
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
__all__ += ['softshrink']

_softshrink_ = generate_layer_fn('softshrink')


def softshrink(x, alpha=None):
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            if name == 'alpha':
                kwargs['lambda'] = val
            else:
                kwargs[name] = val
    return _softshrink_(**kwargs)


softshrink.__doc__ = """
:strong:`Softshrink Activation Operator`

..  math::
82 83 84 85 86
    out = \\begin{cases}
            x - \\alpha, \\text{if } x > \\alpha \\\\
            x + \\alpha, \\text{if } x < -\\alpha \\\\
            0,  \\text{otherwise}
          \\end{cases}
87 88 89


Args:
90 91
    x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16.
    alpha (float): non-negative offset
92 93
    
Returns:
94
    Output of Softshrink operator with the same type of input.
95 96 97 98 99

Examples:
    .. code-block:: python
    
        import paddle.fluid as fluid
100
        data = fluid.data(name="input", shape=[None, 784])
101 102 103
        result = fluid.layers.softshrink(x=data, alpha=0.3)
"""

Y
yuyang18 已提交
104 105 106 107 108 109
__all__ += ['hard_shrink']

_hard_shrink_ = generate_layer_fn('hard_shrink')


def hard_shrink(x, threshold=None):
110
    locals_var = locals().copy()
Y
yuyang18 已提交
111
    kwargs = dict()
112
    for name, val in locals_var.items():
Y
yuyang18 已提交
113 114 115 116 117
        if val is not None:
            kwargs[name] = val
    return _hard_shrink_(**kwargs)


Y
yuyang18 已提交
118
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
Y
yuyang18 已提交
119 120
Examples:

121
    >>> import paddle.fluid as fluid
Y
yuyang18 已提交
122 123 124
    >>> data = fluid.layers.data(name="input", shape=[784])
    >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
Y
yuyang18 已提交
125

W
wopeizl 已提交
126 127 128 129 130 131
__all__ += ['cumsum']

_cum_sum_ = generate_layer_fn('cumsum')


def cumsum(x, axis=None, exclusive=None, reverse=None):
132
    locals_var = locals().copy()
W
wopeizl 已提交
133
    kwargs = dict()
134
    for name, val in locals_var.items():
W
wopeizl 已提交
135 136 137 138 139
        if val is not None:
            kwargs[name] = val
    return _cum_sum_(**kwargs)


140 141
cumsum.__doc__ = """
The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
W
wopeizl 已提交
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
Args:
    x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. 
    axis (int, optional): The dimenstion to accumulate along. -1 means the last dimenstion. Default is -1.
    exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False.
    reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False.

Returns:
    Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. 

Examples:
    .. code-block:: python
        
        import paddle.fluid as fluid
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.cumsum(data, axis=0)
W
wopeizl 已提交
158
"""
Y
yuyang18 已提交
159 160 161 162 163 164 165

__all__ += ['thresholded_relu']

_thresholded_relu_ = generate_layer_fn('thresholded_relu')


def thresholded_relu(x, threshold=None):
166
    locals_var = locals().copy()
Y
yuyang18 已提交
167
    kwargs = dict()
168
    for name, val in locals_var.items():
Y
yuyang18 已提交
169 170 171
        if val is not None:
            kwargs[name] = val

C
chengduo 已提交
172
    return _thresholded_relu_(**kwargs)
Y
yuyang18 已提交
173 174


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
thresholded_relu.__doc__ = """
:strong:`Thresholded ReLU Activation Operator`

Equation:
    ..  math::
        out = \\begin{cases}
            x, &if x > threshold \\\\
            0, &otherwise
            \\end{cases}

Args:
    x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64.
        
    threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0.

Returns:

    Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input.

Y
yuyang18 已提交
194
Examples:
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    
    .. code-block:: python
    
        # declarative mode
        import numpy as np
        from paddle import fluid
        
        x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
        y = fluid.layers.thresholded_relu(x, threshold=0.1)
        
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        start = fluid.default_startup_program()
        main = fluid.default_main_program()
        
        data = np.random.randn(2, 3).astype("float32")
        exe.run(start)
        
        y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
        
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    .. code-block:: python
    
        # imperative mode
        import numpy as np
        from paddle import fluid
        import paddle.fluid.dygraph as dg
        
        data = np.random.randn(2, 3).astype("float32")
        place = fluid.CPUPlace()
        with dg.guard(place) as g:
            x = dg.to_variable(data)
            y = fluid.layers.thresholded_relu(x, threshold=0.1)
            y_np = y.numpy()
        data
        # array([[ 0.21134382, -1.1805999 ,  0.32876605],
        #        [-1.2210793 , -0.7365624 ,  1.0013918 ]], dtype=float32)
        y_np
        # array([[ 0.21134382, -0.        ,  0.32876605],
        #        [-0.        , -0.        ,  1.0013918 ]], dtype=float32)
Y
yuyang18 已提交
241
"""