example.cc 3.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <time.h>
#include <iostream>
17
#include "gflags/gflags.h"
18 19 20
#include "paddle/framework/init.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/inference/io.h"
21

22 23 24 25
DEFINE_string(dirname, "", "Directory of the inference model.");

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
26
  if (FLAGS_dirname.empty()) {
27 28
    // Example:
    //   ./example --dirname=recognize_digits_mlp.inference.model
29
    std::cout << "Usage: ./example --dirname=path/to/your/model" << std::endl;
30 31 32
    exit(1);
  }

33 34 35 36 37 38
  // 1. Define place, executor, scope
  auto place = paddle::platform::CPUPlace();
  paddle::framework::InitDevices();
  auto* executor = new paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

39 40 41
  std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
  std::string dirname = FLAGS_dirname;

42
  // 2. Initialize the inference program
K
kexinzhao 已提交
43
  auto inference_program = paddle::inference::Load(*executor, *scope, dirname);
44 45 46

  // 3. Optional: perform optimization on the inference_program

K
kexinzhao 已提交
47 48 49 50 51
  // 4. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();
52

53
  // 5. Generate input
54 55 56 57 58 59 60 61 62 63 64 65
  paddle::framework::LoDTensor input;
  srand(time(0));
  float* input_ptr =
      input.mutable_data<float>({1, 784}, paddle::platform::CPUPlace());
  for (int i = 0; i < 784; ++i) {
    input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
  }

  std::vector<paddle::framework::LoDTensor> feeds;
  feeds.push_back(input);
  std::vector<paddle::framework::LoDTensor> fetchs;

66 67 68 69 70
  // Set up maps for feed and fetch targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;

  // set_feed_variable
K
kexinzhao 已提交
71 72
  for (size_t i = 0; i < feed_target_names.size(); ++i) {
    feed_targets[feed_target_names[i]] = &feeds[i];
73 74 75
  }

  // get_fetch_variable
K
kexinzhao 已提交
76 77 78
  fetchs.resize(fetch_target_names.size());
  for (size_t i = 0; i < fetch_target_names.size(); ++i) {
    fetch_targets[fetch_target_names[i]] = &fetchs[i];
79 80 81 82 83 84
  }

  // Run the inference program
  executor->Run(*inference_program, scope, feed_targets, fetch_targets);

  // Get outputs
85 86 87 88 89 90 91 92 93 94 95 96 97 98
  for (size_t i = 0; i < fetchs.size(); ++i) {
    auto dims_i = fetchs[i].dims();
    std::cout << "dims_i:";
    for (int j = 0; j < dims_i.size(); ++j) {
      std::cout << " " << dims_i[j];
    }
    std::cout << std::endl;
    std::cout << "result:";
    float* output_ptr = fetchs[i].data<float>();
    for (int j = 0; j < paddle::framework::product(dims_i); ++j) {
      std::cout << " " << output_ptr[j];
    }
    std::cout << std::endl;
  }
99

100 101 102
  delete scope;
  delete executor;

103 104
  return 0;
}