/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "gflags/gflags.h" #include "paddle/framework/init.h" #include "paddle/framework/lod_tensor.h" #include "paddle/inference/io.h" DEFINE_string(dirname, "", "Directory of the inference model."); int main(int argc, char** argv) { google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_dirname.empty()) { // Example: // ./example --dirname=recognize_digits_mlp.inference.model std::cout << "Usage: ./example --dirname=path/to/your/model" << std::endl; exit(1); } // 1. Define place, executor, scope auto place = paddle::platform::CPUPlace(); paddle::framework::InitDevices(); auto* executor = new paddle::framework::Executor(place); auto* scope = new paddle::framework::Scope(); std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl; std::string dirname = FLAGS_dirname; // 2. Initialize the inference program auto inference_program = paddle::inference::Load(*executor, *scope, dirname); // 3. Optional: perform optimization on the inference_program // 4. Get the feed_target_names and fetch_target_names const std::vector& feed_target_names = inference_program->GetFeedTargetNames(); const std::vector& fetch_target_names = inference_program->GetFetchTargetNames(); // 5. Generate input paddle::framework::LoDTensor input; srand(time(0)); float* input_ptr = input.mutable_data({1, 784}, paddle::platform::CPUPlace()); for (int i = 0; i < 784; ++i) { input_ptr[i] = rand() / (static_cast(RAND_MAX)); } std::vector feeds; feeds.push_back(input); std::vector fetchs; // Set up maps for feed and fetch targets std::map feed_targets; std::map fetch_targets; // set_feed_variable for (size_t i = 0; i < feed_target_names.size(); ++i) { feed_targets[feed_target_names[i]] = &feeds[i]; } // get_fetch_variable fetchs.resize(fetch_target_names.size()); for (size_t i = 0; i < fetch_target_names.size(); ++i) { fetch_targets[fetch_target_names[i]] = &fetchs[i]; } // Run the inference program executor->Run(*inference_program, scope, feed_targets, fetch_targets); // Get outputs for (size_t i = 0; i < fetchs.size(); ++i) { auto dims_i = fetchs[i].dims(); std::cout << "dims_i:"; for (int j = 0; j < dims_i.size(); ++j) { std::cout << " " << dims_i[j]; } std::cout << std::endl; std::cout << "result:"; float* output_ptr = fetchs[i].data(); for (int j = 0; j < paddle::framework::product(dims_i); ++j) { std::cout << " " << output_ptr[j]; } std::cout << std::endl; } delete scope; delete executor; return 0; }