test_reverse_op.py 8.3 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
F
fengjiayi 已提交
18 19
import unittest
import numpy as np
20
from op_test import OpTest
21
import paddle
22 23
import paddle.fluid as fluid
from paddle.fluid import core
F
fengjiayi 已提交
24

25 26 27
from paddle.fluid.framework import program_guard, Program
from test_attribute_var import UnittestBase

F
fengjiayi 已提交
28 29

class TestReverseOp(OpTest):
30

F
fengjiayi 已提交
31
    def initTestCase(self):
32
        self.x = np.random.random((3, 40)).astype('float64')
F
fengjiayi 已提交
33 34 35 36 37
        self.axis = [0]

    def setUp(self):
        self.initTestCase()
        self.op_type = "reverse"
W
wanghuancoder 已提交
38
        self.python_api = fluid.layers.reverse
F
fengjiayi 已提交
39 40 41 42 43 44 45 46
        self.inputs = {"X": self.x}
        self.attrs = {'axis': self.axis}
        out = self.x
        for a in self.axis:
            out = np.flip(out, axis=a)
        self.outputs = {'Out': out}

    def test_check_output(self):
W
wanghuancoder 已提交
47
        self.check_output(check_eager=True)
F
fengjiayi 已提交
48 49

    def test_check_grad(self):
W
wanghuancoder 已提交
50
        self.check_grad(['X'], 'Out', check_eager=True)
F
fengjiayi 已提交
51 52 53


class TestCase0(TestReverseOp):
54

F
fengjiayi 已提交
55
    def initTestCase(self):
56
        self.x = np.random.random((3, 40)).astype('float64')
F
fengjiayi 已提交
57 58 59
        self.axis = [1]


60
class TestCase0_neg(TestReverseOp):
61

62 63 64 65 66
    def initTestCase(self):
        self.x = np.random.random((3, 40)).astype('float64')
        self.axis = [-1]


F
fengjiayi 已提交
67
class TestCase1(TestReverseOp):
68

F
fengjiayi 已提交
69
    def initTestCase(self):
70
        self.x = np.random.random((3, 40)).astype('float64')
F
fengjiayi 已提交
71 72 73
        self.axis = [0, 1]


74
class TestCase1_neg(TestReverseOp):
75

76 77 78 79 80
    def initTestCase(self):
        self.x = np.random.random((3, 40)).astype('float64')
        self.axis = [0, -1]


F
fengjiayi 已提交
81
class TestCase2(TestReverseOp):
82

F
fengjiayi 已提交
83
    def initTestCase(self):
84
        self.x = np.random.random((3, 4, 10)).astype('float64')
F
fengjiayi 已提交
85 86 87
        self.axis = [0, 2]


88
class TestCase2_neg(TestReverseOp):
89

90 91 92 93 94
    def initTestCase(self):
        self.x = np.random.random((3, 4, 10)).astype('float64')
        self.axis = [0, -2]


F
fengjiayi 已提交
95
class TestCase3(TestReverseOp):
96

F
fengjiayi 已提交
97
    def initTestCase(self):
98
        self.x = np.random.random((3, 4, 10)).astype('float64')
F
fengjiayi 已提交
99 100 101
        self.axis = [1, 2]


102
class TestCase3_neg(TestReverseOp):
103

104 105 106 107 108
    def initTestCase(self):
        self.x = np.random.random((3, 4, 10)).astype('float64')
        self.axis = [-1, -2]


109
class TestCase4(unittest.TestCase):
110

111 112 113 114 115 116 117
    def test_error(self):
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
118 119 120
            label = fluid.layers.data(name="label",
                                      shape=[1, 1, 1, 1, 1, 1, 1, 1],
                                      dtype="int64")
121 122 123 124 125 126
            rev = fluid.layers.reverse(label, axis=[-1, -2])

        def _run_program():
            x = np.random.random(size=(10, 1, 1, 1, 1, 1, 1)).astype('int64')
            exe.run(train_program, feed={"label": x})

127
        self.assertRaises(IndexError, _run_program)
128 129


130
class TestReverseLoDTensorArray(unittest.TestCase):
131

132 133
    def setUp(self):
        self.shapes = [[5, 25], [5, 20], [5, 5]]
134 135
        self.place = fluid.CUDAPlace(
            0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        self.exe = fluid.Executor(self.place)

    def run_program(self, arr_len, axis=0):
        main_program = fluid.Program()

        with fluid.program_guard(main_program):
            inputs, inputs_data = [], []
            for i in range(arr_len):
                x = fluid.data("x%s" % i, self.shapes[i], dtype='float32')
                x.stop_gradient = False
                inputs.append(x)
                inputs_data.append(
                    np.random.random(self.shapes[i]).astype('float32'))

            tensor_array = fluid.layers.create_array(dtype='float32')
            for i in range(arr_len):
                idx = fluid.layers.array_length(tensor_array)
                fluid.layers.array_write(inputs[i], idx, tensor_array)

            reverse_array = fluid.layers.reverse(tensor_array, axis=axis)
            output, _ = fluid.layers.tensor_array_to_tensor(reverse_array)
            loss = fluid.layers.reduce_sum(output)
            fluid.backward.append_backward(loss)
            input_grads = list(
                map(main_program.global_block().var,
                    [x.name + "@GRAD" for x in inputs]))

            feed_dict = dict(zip([x.name for x in inputs], inputs_data))
            res = self.exe.run(main_program,
                               feed=feed_dict,
                               fetch_list=input_grads + [output.name])

            return np.hstack(inputs_data[::-1]), res

    def test_case1(self):
        gt, res = self.run_program(arr_len=3)
        self.check_output(gt, res)
        # test with tuple type of axis
        gt, res = self.run_program(arr_len=3, axis=(0, ))
        self.check_output(gt, res)

    def test_case2(self):
        gt, res = self.run_program(arr_len=1)
        self.check_output(gt, res)
        # test with list type of axis
        gt, res = self.run_program(arr_len=1, axis=[0])
        self.check_output(gt, res)

    def check_output(self, gt, res):
        arr_len = len(res) - 1
        reversed_array = res[-1]
        # check output
188
        np.testing.assert_array_equal(gt, reversed_array)
189 190
        # check grad
        for i in range(arr_len):
191
            np.testing.assert_array_equal(res[i], np.ones_like(res[i]))
192 193 194 195 196 197 198 199 200 201

    def test_raise_error(self):
        # The len(axis) should be 1 is input(X) is LoDTensorArray
        with self.assertRaises(Exception):
            self.run_program(arr_len=3, axis=[0, 1])
        # The value of axis should be 0 is input(X) is LoDTensorArray
        with self.assertRaises(Exception):
            self.run_program(arr_len=3, axis=1)


202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
class TestReverseAxisTensor(UnittestBase):

    def init_info(self):
        self.shapes = [[2, 3, 4]]
        self.save_path = os.path.join(self.temp_dir.name, self.path_prefix())

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(4, 10)
            x = paddle.randn([2, 3, 4])
            x.stop_gradient = False
            feat = fc(x)  # [2,3,10]

            out = self.call_func(feat)

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue(self.var_prefix() in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out])
            gt = res[0][::-1, :, ::-1]
            np.testing.assert_allclose(res[1], gt)

            paddle.static.save_inference_model(self.save_path, [x], [feat, out],
                                               exe)
            # Test for Inference Predictor
            infer_outs = self.infer_prog()
            gt = infer_outs[0][::-1, :, ::-1]
            np.testing.assert_allclose(infer_outs[1], gt)

    def path_prefix(self):
        return 'reverse_tensor'

    def var_prefix(self):
        return "Var["

    def call_func(self, x):
        # axes is a Variable
        axes = paddle.assign([0, 2])
        out = paddle.fluid.layers.reverse(x, axes)
        return out


class TestReverseAxisListTensor(TestReverseAxisTensor):

    def path_prefix(self):
        return 'reverse_tensors'

    def var_prefix(self):
        return "Vars["

    def call_func(self, x):
        # axes is a List[Variable]
        axes = [paddle.assign([0]), paddle.assign([2])]
        out = paddle.fluid.layers.reverse(x, axes)
261 262 263 264 265 266

        # check attrs
        axis_attrs = paddle.static.default_main_program().block(
            0).ops[-1].all_attrs()["axis"]
        self.assertTrue(axis_attrs[0].name, axes[0].name)
        self.assertTrue(axis_attrs[1].name, axes[1].name)
267 268 269
        return out


F
fengjiayi 已提交
270
if __name__ == '__main__':
271
    paddle.enable_static()
F
fengjiayi 已提交
272
    unittest.main()