test_reverse_op.py 6.1 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle
21 22
import paddle.fluid as fluid
from paddle.fluid import core
F
fengjiayi 已提交
23 24 25


class TestReverseOp(OpTest):
26

F
fengjiayi 已提交
27
    def initTestCase(self):
28
        self.x = np.random.random((3, 40)).astype('float64')
F
fengjiayi 已提交
29 30 31 32 33
        self.axis = [0]

    def setUp(self):
        self.initTestCase()
        self.op_type = "reverse"
W
wanghuancoder 已提交
34
        self.python_api = fluid.layers.reverse
F
fengjiayi 已提交
35 36 37 38 39 40 41 42
        self.inputs = {"X": self.x}
        self.attrs = {'axis': self.axis}
        out = self.x
        for a in self.axis:
            out = np.flip(out, axis=a)
        self.outputs = {'Out': out}

    def test_check_output(self):
W
wanghuancoder 已提交
43
        self.check_output(check_eager=True)
F
fengjiayi 已提交
44 45

    def test_check_grad(self):
W
wanghuancoder 已提交
46
        self.check_grad(['X'], 'Out', check_eager=True)
F
fengjiayi 已提交
47 48 49


class TestCase0(TestReverseOp):
50

F
fengjiayi 已提交
51
    def initTestCase(self):
52
        self.x = np.random.random((3, 40)).astype('float64')
F
fengjiayi 已提交
53 54 55
        self.axis = [1]


56
class TestCase0_neg(TestReverseOp):
57

58 59 60 61 62
    def initTestCase(self):
        self.x = np.random.random((3, 40)).astype('float64')
        self.axis = [-1]


F
fengjiayi 已提交
63
class TestCase1(TestReverseOp):
64

F
fengjiayi 已提交
65
    def initTestCase(self):
66
        self.x = np.random.random((3, 40)).astype('float64')
F
fengjiayi 已提交
67 68 69
        self.axis = [0, 1]


70
class TestCase1_neg(TestReverseOp):
71

72 73 74 75 76
    def initTestCase(self):
        self.x = np.random.random((3, 40)).astype('float64')
        self.axis = [0, -1]


F
fengjiayi 已提交
77
class TestCase2(TestReverseOp):
78

F
fengjiayi 已提交
79
    def initTestCase(self):
80
        self.x = np.random.random((3, 4, 10)).astype('float64')
F
fengjiayi 已提交
81 82 83
        self.axis = [0, 2]


84
class TestCase2_neg(TestReverseOp):
85

86 87 88 89 90
    def initTestCase(self):
        self.x = np.random.random((3, 4, 10)).astype('float64')
        self.axis = [0, -2]


F
fengjiayi 已提交
91
class TestCase3(TestReverseOp):
92

F
fengjiayi 已提交
93
    def initTestCase(self):
94
        self.x = np.random.random((3, 4, 10)).astype('float64')
F
fengjiayi 已提交
95 96 97
        self.axis = [1, 2]


98
class TestCase3_neg(TestReverseOp):
99

100 101 102 103 104
    def initTestCase(self):
        self.x = np.random.random((3, 4, 10)).astype('float64')
        self.axis = [-1, -2]


105
class TestCase4(unittest.TestCase):
106

107 108 109 110 111 112 113
    def test_error(self):
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
114 115 116
            label = fluid.layers.data(name="label",
                                      shape=[1, 1, 1, 1, 1, 1, 1, 1],
                                      dtype="int64")
117 118 119 120 121 122
            rev = fluid.layers.reverse(label, axis=[-1, -2])

        def _run_program():
            x = np.random.random(size=(10, 1, 1, 1, 1, 1, 1)).astype('int64')
            exe.run(train_program, feed={"label": x})

123
        self.assertRaises(IndexError, _run_program)
124 125


126
class TestReverseLoDTensorArray(unittest.TestCase):
127

128 129
    def setUp(self):
        self.shapes = [[5, 25], [5, 20], [5, 5]]
130 131
        self.place = fluid.CUDAPlace(
            0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        self.exe = fluid.Executor(self.place)

    def run_program(self, arr_len, axis=0):
        main_program = fluid.Program()

        with fluid.program_guard(main_program):
            inputs, inputs_data = [], []
            for i in range(arr_len):
                x = fluid.data("x%s" % i, self.shapes[i], dtype='float32')
                x.stop_gradient = False
                inputs.append(x)
                inputs_data.append(
                    np.random.random(self.shapes[i]).astype('float32'))

            tensor_array = fluid.layers.create_array(dtype='float32')
            for i in range(arr_len):
                idx = fluid.layers.array_length(tensor_array)
                fluid.layers.array_write(inputs[i], idx, tensor_array)

            reverse_array = fluid.layers.reverse(tensor_array, axis=axis)
            output, _ = fluid.layers.tensor_array_to_tensor(reverse_array)
            loss = fluid.layers.reduce_sum(output)
            fluid.backward.append_backward(loss)
            input_grads = list(
                map(main_program.global_block().var,
                    [x.name + "@GRAD" for x in inputs]))

            feed_dict = dict(zip([x.name for x in inputs], inputs_data))
            res = self.exe.run(main_program,
                               feed=feed_dict,
                               fetch_list=input_grads + [output.name])

            return np.hstack(inputs_data[::-1]), res

    def test_case1(self):
        gt, res = self.run_program(arr_len=3)
        self.check_output(gt, res)
        # test with tuple type of axis
        gt, res = self.run_program(arr_len=3, axis=(0, ))
        self.check_output(gt, res)

    def test_case2(self):
        gt, res = self.run_program(arr_len=1)
        self.check_output(gt, res)
        # test with list type of axis
        gt, res = self.run_program(arr_len=1, axis=[0])
        self.check_output(gt, res)

    def check_output(self, gt, res):
        arr_len = len(res) - 1
        reversed_array = res[-1]
        # check output
        self.assertTrue(np.array_equal(gt, reversed_array))
        # check grad
        for i in range(arr_len):
            self.assertTrue(np.array_equal(res[i], np.ones_like(res[i])))

    def test_raise_error(self):
        # The len(axis) should be 1 is input(X) is LoDTensorArray
        with self.assertRaises(Exception):
            self.run_program(arr_len=3, axis=[0, 1])
        # The value of axis should be 0 is input(X) is LoDTensorArray
        with self.assertRaises(Exception):
            self.run_program(arr_len=3, axis=1)


F
fengjiayi 已提交
198
if __name__ == '__main__':
199
    paddle.enable_static()
F
fengjiayi 已提交
200
    unittest.main()