layers.py 187.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
Q
qijun 已提交
57
    'classification_cost',
58
    'LayerOutput',
Q
qijun 已提交
59 60 61 62 63 64
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
65
    'seq_concat_layer',
Q
qijun 已提交
66 67 68 69 70 71
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
72
    'scaling_projection',
Q
qijun 已提交
73 74 75 76
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
77
    'rotate_layer',
Q
qijun 已提交
78 79 80 81 82 83 84 85 86
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
87
    'gru_step_naive_layer',
Q
qijun 已提交
88 89 90 91 92 93 94 95 96 97 98 99
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
100
    'warp_ctc_layer',
Q
qijun 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
114
    'printer_layer',
Q
qijun 已提交
115
    'print_layer',
Y
yuan 已提交
116
    'priorbox_layer',
117
    'cross_channel_norm_layer',
118 119
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
120
    'spp_layer',
D
dangqingqing 已提交
121
    'pad_layer',
L
Luo Tao 已提交
122
    'eos_layer',
123
    'smooth_l1_cost',
124
    'layer_support',
W
wwhu 已提交
125
    'multiplex_layer',
D
dangqingqing 已提交
126
    'row_conv_layer',
127
    'dropout_layer',
128
    'prelu_layer',
Q
qijun 已提交
129
]
Z
zhangjinchao01 已提交
130 131 132 133 134 135 136


class LayerType(object):
    """
    Layer type enumerations.
    """

137 138 139 140 141 142 143 144
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
145
    POOLING_AVG = 'average'
146
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
147
    COST = 'cost'
148 149
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
150
    HSIGMOID = 'hsigmoid'
151 152 153 154 155 156
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
157 158 159 160 161 162 163
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
164
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
172
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
173 174 175
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
176
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
177
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
178
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185 186 187 188 189

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
190
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
191
    BLOCK_EXPAND = "blockexpand"
192
    MAXOUT = "maxout"
Q
qijun 已提交
193
    SPP_LAYER = "spp"
D
dangqingqing 已提交
194
    PAD_LAYER = "pad"
W
wwhu 已提交
195
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
196
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
197 198 199

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
200 201
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
202 203 204 205 206

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
207
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
208

209 210 211 212 213 214 215 216 217 218 219
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
Z
zhangjinchao01 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
241
    """
L
Luo Tao 已提交
242
    PaddlePaddle supports three sequence types:
243 244 245

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
246 247
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
248

L
Luo Tao 已提交
249
    Accordingly, AggregateLevel supports two modes:
250

L
Luo Tao 已提交
251
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
252
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
253 254
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
255
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
256 257 258
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
259 260
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
261 262 263
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
286
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
287 288
    """

Q
qijun 已提交
289 290 291 292 293 294 295 296 297
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
298
                 reverse=None):
Z
zhangjinchao01 已提交
299 300
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
301
        assert size is not None
Z
zhangjinchao01 已提交
302 303
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
304
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
305
        self.layer_type = layer_type
306 307
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
308 309 310 311 312 313 314 315
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
316
        self.reverse = reverse
Z
zhangjinchao01 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329

    def __repr__(self):
        """
        Disable __repr__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

    def __str__(self):
        """
        Disable __str__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

330 331 332 333 334 335 336 337
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
338 339 340

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
341
DEVICE = 'device'
Z
zhangjinchao01 已提交
342 343 344


def layer_support(*attrs):
345
    attrs_list = list(attrs)
346
    attrs_list.append(DEVICE)
Q
qijun 已提交
347

Z
zhangjinchao01 已提交
348 349 350
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
351
            for attr in attrs_list:
Z
zhangjinchao01 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
368 369 370 371 372
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
412 413
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
414 415 416 417
    proj.origin = input
    return proj


418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
448 449
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
450 451 452 453
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
493 494
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
495 496 497 498
    proj.origin = input
    return proj


499
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
530
    :type input: LayerOutput
Z
zhangjinchao01 已提交
531 532
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
533
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
534 535 536 537 538 539
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
540 541
        if size is None:
            size = input.size - offset
Q
qijun 已提交
542
        proj = IdentityOffsetProjection(
543
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
544 545 546 547
        proj.origin = input
    return proj


X
xuwei06 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
570
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
571 572 573 574
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
575
@wrap_param_attr_default()
576
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
577
    """
578
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

592 593 594 595 596 597 598
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
599 600
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
601
    proj.origin = input
602
    return proj
Z
zhangjinchao01 已提交
603

604 605

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
606 607
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
608

Z
zhangjinchao01 已提交
609
    .. math::
L
Luo Tao 已提交
610
       out.row[i] += scale * (a.row[i] .* b.row[i])
611

Z
zhangjinchao01 已提交
612 613
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
614

Z
zhangjinchao01 已提交
615
    The example usage is:
616

Z
zhangjinchao01 已提交
617
    .. code-block:: python
618

L
Luo Tao 已提交
619
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
620

621 622 623 624
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
625 626
    :param scale: config scalar, default value is one.
    :type scale: float
627 628
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
629
    """
630 631 632
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
633
    a = kwargs.get('x', a)  # For Backward capacity.
634 635 636 637 638 639
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
640
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
641
    op.origin = [a, b]
642
    return op
Z
zhangjinchao01 已提交
643

644

Z
zhangjinchao01 已提交
645
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
646 647 648
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
685 686 687 688 689 690
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
704
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
721 722 723 724 725 726 727
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
728 729 730 731 732
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

733
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
734 735 736 737 738 739 740 741
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
742
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
743
            self.inputs.append(other)
744 745 746 747
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
748 749 750 751 752 753 754 755
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

756
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
757 758
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
759
        assert len(self.inputs) != 0
760
        ml = MixedLayer(
Z
zhangjinchao01 已提交
761 762 763 764 765
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
766
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
767 768 769
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
770
        self.finalized = True
Z
zhangjinchao01 已提交
771 772 773 774 775 776


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
777 778 779 780 781
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
826 827 828 829 830 831
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
832
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
833 834 835 836 837 838 839 840
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
841
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
842 843 844 845 846 847 848
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
849
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
850 851 852 853 854

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
855
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
856
    :type height: int|None
L
Luo Tao 已提交
857
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
858
    :type width: int|None
Z
zhangjinchao01 已提交
859 860
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
861
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
862 863
    :rtype: LayerOutput
    """
Q
qijun 已提交
864 865 866 867
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
868 869
        height=height,
        width=width,
Q
qijun 已提交
870
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
893
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
894 895
    :rtype: LayerOutput
    """
Q
qijun 已提交
896 897 898 899 900 901
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
902 903 904 905 906 907 908 909 910
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
911 912 913 914 915 916 917
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
918 919 920 921 922 923 924 925 926 927 928 929
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
930
    which is equal to:
Z
zhangjinchao01 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
953
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
954 955 956 957
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
958
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
959 960
        param_attr = [param_attr]
    else:
961
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
962 963 964 965
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

966
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
967 968

    Layer(
Q
qijun 已提交
969 970 971
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
972 973 974 975 976
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
977 978 979
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
980

981

982
@wrap_name_default("print")
X
xuwei06 已提交
983
def printer_layer(input, name=None):
984 985
    """
    Print the output value of input layers. This layer is useful for debugging.
986 987 988 989 990

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
991
    :return: LayerOutput
992
    """
993 994 995 996 997
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
998 999 1000 1001

    Layer(
        name=name,
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1002
        inputs=[l.name for l in input], )
1003
    # this layer don't return anything, can not be input of other layer.
1004

X
xuwei06 已提交
1005 1006 1007 1008 1009 1010 1011
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1012

Y
yuan 已提交
1013
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1014
def priorbox_layer(input,
G
gaoyuan 已提交
1015
                   image,
G
gaoyuan 已提交
1016 1017 1018 1019 1020
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1021 1022 1023 1024 1025 1026 1027
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1028 1029
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1041
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1042 1043 1044
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1045
        inputs=[input.name, image.name],
Y
yuan 已提交
1046 1047 1048 1049 1050 1051
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1052 1053
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1054
        parents=[input, image],
G
gaoyuan 已提交
1055 1056 1057
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input_loc: The input predict location.
    :type input_loc: LayerOutput
    :param input_conf: The input priorbox confidence.
    :type input_conf: LayerOutput
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    input_loc_num = 0
    input_conf_num = 0

    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
        input_loc_num += 1

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
        input_conf_num += 1
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
    :param input_loc: The input predict location.
    :type input_loc: LayerOutput
    :param input_conf: The input priorbox confidence.
    :type input_conf: LayerOutput
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    input_loc_num = 0
    input_conf_num = 0

    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
        input_loc_num += 1

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
        input_conf_num += 1
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1216 1217
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1218 1219 1220 1221 1222
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1223

G
gaoyuan 已提交
1224 1225 1226 1227 1228 1229 1230 1231
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1232
    assert input.num_filters is not None
G
gaoyuan 已提交
1233 1234
    Layer(
        name=name,
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1248 1249
    return LayerOutput(
        name,
1250
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1251 1252 1253 1254 1255
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1256 1257 1258 1259
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1260 1261 1262 1263
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1264
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1275
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1276

L
Luo Tao 已提交
1277 1278
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1291
    :return: LayerOutput object.
Y
Yu Yang 已提交
1292
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1293 1294
    """
    extra_dict = dict()
1295
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1296 1297
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1298 1299 1300 1301
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1302 1303 1304 1305 1306 1307 1308 1309
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
Q
qijun 已提交
1310
        **extra_dict)
Z
zhangjinchao01 已提交
1311

Q
qijun 已提交
1312 1313
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1314

Q
qijun 已提交
1315

Z
zhangjinchao01 已提交
1316 1317
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1318
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1319 1320 1321
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
Q
qijun 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330
def lstmemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1331 1332 1333 1334 1335 1336 1337 1338
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1339
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1340

L
luotao02 已提交
1341
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1342

L
luotao02 已提交
1343
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1344

L
luotao02 已提交
1345
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1346

L
luotao02 已提交
1347
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1348 1349


C
caoying03 已提交
1350
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1351
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1352 1353 1354 1355
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1356

C
caoying03 已提交
1357
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1358 1359
    to config a simple plain lstm layer.

C
caoying03 已提交
1360 1361 1362 1363
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1387
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1388 1389 1390 1391 1392 1393
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    assert input.size is not None and input.size % 4 == 0
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal

        plog("NOTE: The lstmemory layer[%s]'s size is set by previous input "
             "layer. The lstm size should be equal with input layer size/4. The"
             " size which is set explicitly will be ignored." % name)
Z
zhangjinchao01 已提交
1404

Q
qijun 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1415

Q
qijun 已提交
1416 1417 1418 1419 1420
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1421

Z
zhangjinchao01 已提交
1422 1423 1424

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1425
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1426 1427 1428
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
Q
qijun 已提交
1429 1430 1431 1432 1433 1434 1435 1436
def grumemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1458 1459
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1460 1461 1462 1463 1464

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1465 1466 1467
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1468 1469 1470 1471 1472

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1473
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1474
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1475 1476 1477
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1478

C
caoying03 已提交
1479 1480 1481
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1493
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
1509 1510 1511
    :param size: Stub parameter of size, but actually not used. If set this size
                 will get a warning.
    :type size: None
D
dangqingqing 已提交
1512
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1513 1514 1515 1516
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1517 1518 1519 1520 1521 1522 1523 1524 1525
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
        plog("NOTE: the gru memory layer's size is set by previous input layer,"
             " and should be input size / 3. Set size explicitly will be "
             "ignored.")
Z
zhangjinchao01 已提交
1526

Q
qijun 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1536

Q
qijun 已提交
1537 1538 1539 1540 1541
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1542

Z
zhangjinchao01 已提交
1543 1544 1545

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1546 1547
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1548
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1549
             stride=-1,
Z
zhangjinchao01 已提交
1550 1551 1552 1553
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1554 1555 1556
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1557
    of stride is -1.
1558

L
Luo Tao 已提交
1559 1560 1561 1562 1563 1564
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1565 1566 1567 1568 1569
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
1570
    :param stride: window size.
1571
    :type stride: Int
Z
zhangjinchao01 已提交
1572 1573
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1574
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1575 1576
    :rtype: LayerOutput
    """
1577 1578 1579 1580 1581 1582
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1583
    if agg_level == AggregateLevel.TO_SEQUENCE:
1584 1585
        assert stride == -1

Z
zhangjinchao01 已提交
1586 1587 1588 1589 1590
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1591
        stride=stride,
Q
qijun 已提交
1592 1593 1594 1595 1596 1597
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1598 1599 1600 1601


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1602 1603
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1604
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1605
              stride=-1,
Z
zhangjinchao01 已提交
1606 1607 1608 1609
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1610 1611 1612
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1613
    of stride is -1.
1614

L
Luo Tao 已提交
1615 1616 1617 1618 1619 1620
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1621 1622 1623 1624 1625
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
1626
    :param stride: window size.
1627
    :type stride: Int
Z
zhangjinchao01 已提交
1628 1629
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1630
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1631 1632
    :rtype: LayerOutput
    """
1633 1634 1635 1636 1637 1638 1639

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1640
    if agg_level == AggregateLevel.TO_SEQUENCE:
1641 1642
        assert stride == -1

Z
zhangjinchao01 已提交
1643 1644 1645 1646 1647
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1648
        stride=stride,
Q
qijun 已提交
1649 1650 1651 1652 1653 1654
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1655 1656 1657


class ExpandLevel(object):
1658 1659 1660 1661 1662
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1663 1664
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1665 1666
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1667 1668
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1669 1670
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1671 1672
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1673 1674
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1675

1676

Z
zhangjinchao01 已提交
1677 1678
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1679 1680
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1681 1682
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1683
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1695
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1710
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1720 1721 1722 1723 1724 1725
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1726 1727


X
xuwei06 已提交
1728 1729
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1730
def repeat_layer(input, num_repeats, name=None, layer_attr=None):
X
xuwei06 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    """
    A layer for repeating the input for num_repeats times. This is equivalent
    to apply concat_layer() with num_repeats same input.

    .. math::
       y  = [x, x, \cdots, x]

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1742
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
        num_filters=num_repeats,
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1761 1762 1763 1764 1765 1766 1767
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
        parents=[input])

X
xuwei06 已提交
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support()
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1781
    the dimension of each instance is M, and the input reshape_size is N, then the
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1852
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1853 1854
    :rtype: LayerOutput
    """
1855
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1856
    assert len(input) == 2
1857 1858 1859 1860 1861 1862 1863
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1864 1865 1866 1867
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1868 1869 1870 1871 1872 1873
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1874 1875


L
liaogang 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1892
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1893

L
liaogang 已提交
1894
    :param   input:        A input layer.
L
liaogang 已提交
1895
    :type    input:        LayerOutput.
L
liaogang 已提交
1896
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1897
    :type    out_size_x:   int|None
L
liaogang 已提交
1898
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1899
    :type    out_size_y:   int|None
L
liaogang 已提交
1900
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1901
    :type    name:         None|basestring
L
liaogang 已提交
1902
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1903 1904 1905 1906 1907 1908 1909
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1910
    assert input.num_filters is not None
L
liaogang 已提交
1911
    num_channels = input.num_filters
Q
qijun 已提交
1912 1913 1914 1915 1916 1917 1918
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1919
                channels=num_channels)),
Q
qijun 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1929

Z
zhangjinchao01 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1957
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1958 1959
    :rtype: LayerOutput
    """
1960 1961 1962
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1963 1964 1965
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1966
        inputs=[weight.name, input.name],
Q
qijun 已提交
1967 1968 1969
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
1970 1971 1972 1973 1974 1975


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1976
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
1977 1978

    .. math::
1979
       y  = w x
Z
zhangjinchao01 已提交
1980

1981 1982 1983 1984 1985
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2001
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2002 2003
    :rtype: LayerOutput
    """
2004 2005 2006
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2007 2008 2009 2010
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2011 2012 2013
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2014 2015 2016 2017 2018 2019


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2020
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2039
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2040 2041 2042 2043 2044 2045
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2046 2047 2048
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2049 2050


2051 2052
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2053
def rotate_layer(input, height, width, name=None, layer_attr=None):
2054
    """
H
Haonan 已提交
2055 2056
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2057 2058

    .. math::
H
Haonan 已提交
2059
       y(j,i,:) = x(M-i-1,j,:)
2060

H
Haonan 已提交
2061
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2062 2063 2064 2065 2066 2067

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2068 2069
                          height=100,
                          width=100)
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2083 2084 2085
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2086
        width=width,
H
Haonan 已提交
2087 2088 2089 2090 2091 2092 2093 2094
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2095 2096


Z
zhangjinchao01 已提交
2097 2098
@wrap_name_default()
@layer_support()
2099
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2100 2101 2102 2103
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2104
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2105 2106 2107 2108 2109
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2110

2111 2112
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2113

L
Luo Tao 已提交
2114 2115 2116 2117 2118 2119
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2132
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2133 2134
    :rtype: LayerOutput
    """
2135
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2136 2137 2138 2139 2140 2141
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2142
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2143
    else:
2144 2145
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2146 2147 2148 2149 2150 2151
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2152
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2153
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2154

2155

Z
zhangjinchao01 已提交
2156 2157
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2158
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2159
@layer_support()
Q
qijun 已提交
2160 2161
def hsigmoid(input,
             label,
2162
             num_classes=None,
Q
qijun 已提交
2163 2164 2165 2166
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2178
                        label=data_layer)
Z
zhangjinchao01 已提交
2179 2180 2181 2182 2183 2184 2185

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2186
    :type num_classes: int|None
L
luotao02 已提交
2187 2188
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2189 2190 2191
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2192 2193
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2194 2195
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2196
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2197 2198 2199 2200
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2201 2202 2203 2204 2205 2206 2207 2208 2209
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2210 2211 2212
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2213 2214 2215 2216 2217
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2218 2219
    ipts_for_layer = []
    parents = []
2220
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2221
        assert isinstance(each_input, LayerOutput)
2222
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2223 2224 2225 2226
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2227
    l = Layer(
Z
zhangjinchao01 已提交
2228 2229 2230 2231 2232
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2233 2234 2235
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2236

2237

Z
zhangjinchao01 已提交
2238 2239 2240 2241 2242
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2259 2260
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2261
    """
2262
    Convolution layer for image. Paddle can support both square and non-square
2263
    input currently.
Z
zhangjinchao01 已提交
2264 2265 2266 2267

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2268

2269
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2270
    and non-square input currently.
2271

X
xuwei06 已提交
2272
    The details of convolution transpose layer,
2273 2274 2275
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2276 2277 2278 2279
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2280 2281 2282
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2283
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2284 2285
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2286

L
Luo Tao 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2297 2298 2299 2300
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2301 2302 2303
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2304 2305 2306
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2307
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2308 2309 2310 2311 2312
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2313 2314 2315
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2316 2317
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2318 2319 2320
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2335 2336
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2337
    :param layer_type: specify the layer_type, default is None. If trans=True,
2338 2339
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2340
                       "cudnn_conv"
2341
    :type layer_type: String
D
dangqingqing 已提交
2342
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2343 2344 2345 2346 2347
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2348

Z
zhangjinchao01 已提交
2349
    if filter_size_y is None:
2350 2351 2352 2353 2354 2355
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2356
    if stride_y is None:
2357 2358 2359 2360 2361 2362
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2363
    if padding_y is None:
2364 2365 2366 2367 2368 2369 2370 2371
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2372
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2373 2374 2375 2376
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2377

2378 2379
    if layer_type:
        if trans:
2380
            assert layer_type in ["exconvt", "cudnn_convt"]
2381 2382 2383 2384 2385
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2386

X
xuwei06 已提交
2387
    l = Layer(
Z
zhangjinchao01 已提交
2388
        name=name,
Q
qijun 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2401 2402 2403 2404
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2405
        type=lt,
Q
qijun 已提交
2406 2407 2408 2409 2410 2411 2412 2413
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2414 2415 2416 2417


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2428 2429
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2430 2431 2432 2433 2434 2435 2436
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2465
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2466
    :type padding: int
2467 2468
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2469 2470 2471 2472
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2473
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2474
    :type pool_size: int
2475 2476
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2477 2478
    :param num_channels: number of input channel.
    :type num_channels: int
2479
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2480 2481
                      MaxPooling.
    :type pool_type: BasePoolingType
2482
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2483
    :type stride: int
2484 2485
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2486 2487
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2488 2489 2490 2491
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2492 2493
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2504
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2505
        if (
Y
Yu Yang 已提交
2506
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2507
        else pool_type.name
2508 2509 2510 2511 2512

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2513
    l = Layer(
Z
zhangjinchao01 已提交
2514 2515
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2528
                    padding_y=padding_y))
Q
qijun 已提交
2529
        ],
2530
        ceil_mode=ceil_mode,
Q
qijun 已提交
2531 2532 2533 2534 2535 2536 2537
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2538 2539


Q
qijun 已提交
2540 2541
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2542 2543 2544 2545 2546 2547
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2548 2549 2550 2551 2552
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2553 2554 2555 2556
    The example usage is:

    ..  code-block:: python

2557 2558 2559
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2560 2561
                        pool_type=MaxPooling())

Q
qijun 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2590
    l = Layer(
Q
qijun 已提交
2591 2592
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2593 2594 2595 2596 2597
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2598
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2610 2611 2612 2613
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2614
    l = Layer(
Q
qijun 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2634 2635 2636 2637


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2638 2639 2640 2641 2642 2643
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2644
                      layer_attr=None):
Z
zhangjinchao01 已提交
2645
    """
2646
    Response normalization across feature maps.
D
dangqingqing 已提交
2647 2648
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2649

L
Luo Tao 已提交
2650 2651 2652
    The example usage is:

    ..  code-block:: python
2653

L
Luo Tao 已提交
2654 2655
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2656
    :param name: layer name.
D
dangqingqing 已提交
2657
    :type name: None|basestring
Z
zhangjinchao01 已提交
2658 2659
    :param input: layer's input.
    :type input: LayerOutput
2660
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2661
    :type size: int
D
dangqingqing 已提交
2662
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2663
    :type scale: float
D
dangqingqing 已提交
2664
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2665 2666 2667 2668 2669
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2670
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2671 2672 2673
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2674
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2675 2676 2677 2678 2679 2680 2681 2682


@wrap_bias_attr_default()
@wrap_param_attr_default(default_factory=lambda _: ParamAttr(initial_mean=1.0,
                                                             initial_std=0.))
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
Q
qijun 已提交
2683 2684 2685 2686 2687 2688 2689
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2711 2712 2713
    The example usage is:

    ..  code-block:: python
2714

L
Luo Tao 已提交
2715 2716
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2731
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2759
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2779
    l = Layer(
Z
zhangjinchao01 已提交
2780
        name=name,
Q
qijun 已提交
2781 2782
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2783 2784 2785 2786 2787 2788
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2789
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2790

Q
qijun 已提交
2791 2792 2793 2794 2795 2796 2797
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2825
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2826 2827 2828 2829 2830 2831
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2832 2833 2834
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2835 2836 2837 2838 2839 2840


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
Q
qijun 已提交
2841
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2864 2865 2866
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2867 2868

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2869 2870
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2885
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2886 2887 2888 2889 2890 2891
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2892
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2893 2894 2895 2896 2897 2898 2899
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2900
    l = Layer(
Q
qijun 已提交
2901 2902 2903
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2904 2905
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2906
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2907

Q
qijun 已提交
2908 2909 2910 2911 2912 2913 2914
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2915 2916 2917 2918 2919


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2920
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2921 2922 2923 2924
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2925 2926 2927 2928 2929 2930
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2931 2932 2933
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2934
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2935 2936 2937 2938
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2939
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2940 2941 2942 2943 2944 2945 2946 2947
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2948
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2949 2950

    def __is_type__(o, tp):
2951
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
2973 2974
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
2975

Q
qijun 已提交
2976 2977
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
2978

2979 2980
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
2981

2982
    layer = Layer(
Q
qijun 已提交
2983 2984
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
2985 2986
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
2987
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
2988
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2989

2990
    sz = layer.config.size
Z
zhangjinchao01 已提交
2991

Q
qijun 已提交
2992 2993 2994 2995 2996 2997 2998 2999
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3000 3001
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3002
@wrap_bias_attr_default(has_bias=False)
3003 3004 3005 3006 3007
@layer_support()
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3008

3009
    Inputs:
3010 3011 3012
      - a = [a1, a2, ..., an]
      - b = [b1, b2, ..., bn]
      - Note that the length of a and b should be the same.
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
    Output: [a1, b1, a2, b2, ..., an, bn]

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3032 3033 3034 3035
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3057
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3058 3059
def memory(name,
           size,
3060
           memory_name=None,
Q
qijun 已提交
3061 3062 3063 3064
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3085 3086 3087 3088 3089 3090 3091 3092 3093
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3094

3095 3096 3097 3098 3099 3100 3101
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3102 3103 3104
    :type name: basestring
    :param size: size of memory.
    :type size: int
3105 3106 3107
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
Z
zhangjinchao01 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
    :param is_seq: is sequence for boot_layer
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3118
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3129 3130
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140
    memory_name = Memory(
        name,
        size,
        is_sequence=is_seq,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3141 3142

    lout = LayerOutput(
3143
        name=memory_name,
Q
qijun 已提交
3144 3145 3146
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3147 3148 3149 3150
    return lout


@wrap_bias_attr_default()
Q
qijun 已提交
3151 3152
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3153 3154 3155
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3156 3157
def lstm_step_layer(input,
                    state,
3158
                    size=None,
Q
qijun 已提交
3159 3160 3161 3162 3163 3164
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3165 3166 3167 3168 3169 3170
    """
    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
    as follow.

    ..  math::

L
luotao02 已提交
3171
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3172

L
luotao02 已提交
3173
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3174

L
luotao02 已提交
3175
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3176

L
luotao02 已提交
3177
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
3178

L
luotao02 已提交
3179
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3180 3181


L
luotao02 已提交
3182
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
    input vector.

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


    This layer contains two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, which name is 'state' and can use
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
    :param size: Layer's size. NOTE: lstm layer's size, should be equal as
                 :code:`input.size/4`, and should be equal as
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3221
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3222 3223
    :rtype: LayerOutput
    """
3224 3225 3226

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3227 3228 3229 3230 3231 3232 3233
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3234
        size=state.size,
Q
qijun 已提交
3235 3236
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3237

Q
qijun 已提交
3238 3239 3240 3241 3242 3243 3244
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3245 3246 3247


@wrap_bias_attr_default()
W
wangyang59 已提交
3248
@wrap_param_attr_default()
Q
qijun 已提交
3249
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3250 3251 3252
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3253 3254 3255 3256 3257 3258 3259
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3260
                   param_attr=None,
Q
qijun 已提交
3261
                   layer_attr=None):
Z
zhangjinchao01 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3272 3273
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3274
    :param layer_attr:
D
dangqingqing 已提交
3275
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3276 3277 3278 3279 3280 3281 3282 3283
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3284 3285 3286 3287
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3288
        # backward model compatibility.
3289
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3290 3291 3292 3293
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3294
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3295
    return LayerOutput(
Q
qijun 已提交
3296 3297
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3298
        parents=[input, output_mem],
Q
qijun 已提交
3299 3300
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3301 3302


Y
Yu Yang 已提交
3303 3304 3305 3306
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3307
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3375 3376 3377 3378
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3379 3380 3381 3382
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3392
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3393 3394 3395 3396 3397 3398 3399
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3400 3401 3402 3403 3404 3405 3406
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3407

Q
qijun 已提交
3408 3409 3410 3411 3412
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3413 3414 3415 3416 3417 3418 3419


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3420 3421 3422 3423 3424 3425 3426
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3427
    """
3428 3429
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3430

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3458
    :return: LayerOutput object.
3459
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3460
    """
Q
qijun 已提交
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3476 3477 3478 3479 3480 3481 3482


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
    """
3483

Z
zhangjinchao01 已提交
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
        self.is_seq = is_seq
        assert input.size is not None or size is not None
        if size is not None:
            input.size = size


class SubsequenceInput(object):
    """
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3503

Z
zhangjinchao01 已提交
3504 3505 3506 3507 3508 3509 3510
    def __init__(self, input):
        assert isinstance(input, LayerOutput)
        assert input.size is not None
        self.input = input


@wrap_name_default("recurrent_group")
L
Luo Tao 已提交
3511 3512 3513 3514 3515
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
L
Luo Tao 已提交
3516
                    is_generating=False):
Z
zhangjinchao01 已提交
3517
    """
C
caoying03 已提交
3518 3519 3520 3521 3522
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3567 3568
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3569
    :type reverse: bool
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580

    :param targetInlink: the input layer which share info with layer group's output

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

L
Luo Tao 已提交
3581
    :param is_generating: If is generating, none of input type should be LayerOutput;
3582
                          else, for training or testing, one of the input type must
L
Luo Tao 已提交
3583
                          be LayerOutput.
L
Luo Tao 已提交
3584

L
Liu Yiqun 已提交
3585
    :type is_generating: bool
3586

D
dangqingqing 已提交
3587
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput) \
               or isinstance(x, SubsequenceInput)

    if is_single_input(input):
        input = [input]
3598
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3599 3600 3601 3602 3603 3604

    def is_in_links(x):
        return isinstance(x, LayerOutput) or isinstance(x, SubsequenceInput)

    in_links = filter(is_in_links, input)

3605 3606 3607 3608 3609 3610 3611 3612 3613
    def targetInlink_in_inlinks():
        for inlink in in_links:
            if isinstance(inlink, SubsequenceInput):
                if targetInlink == inlink.input:
                    return True
            elif targetInlink == inlink:
                return True
        return False

Q
qijun 已提交
3614
    assert (targetInlink == None or targetInlink_in_inlinks())
3615
    targetInlinkName = None if targetInlink == None \
Y
Yu Yang 已提交
3616 3617
        else targetInlink.name if isinstance(targetInlink, LayerOutput) \
        else targetInlink.input.name
3618

Z
zhangjinchao01 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
    contains_sub_seq = [False]

    def map_in_links(x):
        if isinstance(x, SubsequenceInput):
            contains_sub_seq[0] = True
            return Link(name=x.input.name, has_subseq=True)
        else:
            return x.name

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3629 3630
        name=name,
        in_links=map(map_in_links, in_links),
3631 3632
        seq_reversed=reverse,
        target_inlinkname=targetInlinkName)
Z
zhangjinchao01 已提交
3633
    in_args = []
3634
    has_LayerOutput = False
Z
zhangjinchao01 已提交
3635 3636 3637 3638
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
3639
            has_LayerOutput = True
Z
zhangjinchao01 已提交
3640 3641
        elif isinstance(each_input, SubsequenceInput):
            in_args.append(each_input.input)
3642
            has_LayerOutput = True
Z
zhangjinchao01 已提交
3643 3644
        else:
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653
            mem = memory(
                name=mem_name,
                is_seq=each_input.is_seq,
                size=each_input.input.size,
                boot_layer=each_input.input)
            with mixed_layer(
                    name=mem_name,
                    size=each_input.input.size,
                    act=IdentityActivation()) as mix:
Z
zhangjinchao01 已提交
3654 3655 3656
                mix += identity_projection(mem)
            in_args.append(mem)

L
Luo Tao 已提交
3657
    assert (is_generating != has_LayerOutput)
L
Luo Tao 已提交
3658

Z
zhangjinchao01 已提交
3659 3660 3661 3662 3663 3664 3665
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
3666
        ot.reverse = reverse
Z
zhangjinchao01 已提交
3667 3668 3669 3670 3671 3672 3673
        if contains_sub_seq[0]:
            RecurrentLayerGroupSetOutLink(Link(ot.name, has_subseq=True))
        else:
            RecurrentLayerGroupSetOutLink(ot.name)

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3674 3675 3676 3677 3678
    for layer_out in layer_outs:
        # Thee previous full_name is the name is the rnn group
        # We need a full_name outside the rnn group
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3679 3680 3681 3682 3683
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3684

Z
zhangjinchao01 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
Q
qijun 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3711 3712 3713
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3714
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3738
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3739 3740 3741 3742
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3753

3754

H
Haonan 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3791

Z
zhangjinchao01 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3808 3809
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3810 3811 3812 3813 3814 3815
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3816
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3817 3818
    :rtype: LayerOutput
    """
Q
qijun 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3830 3831 3832


@wrap_name_default()
Q
qijun 已提交
3833 3834 3835 3836 3837 3838 3839
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3840
                num_results_per_sample=None):
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3852
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3853 3854 3855 3856
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3857 3858 3859 3860 3861
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3862 3863
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3864 3865
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3866 3867
                               bos_id=0,
                               eos_id=1,
3868
                               beam_size=5)
3869 3870 3871 3872 3873 3874 3875 3876 3877

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3878
                 step, and it is applied to sequences with arbitrary length by
3879 3880 3881 3882 3883
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3884 3885
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3886
    :type input: list
3887 3888 3889
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3890
                   symbol is essential, since it is used to initialize the RNN
3891 3892 3893 3894 3895 3896 3897 3898
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3899 3900
    :param max_length: Max generated sequence length.
    :type max_length: int
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3911 3912
    :return: The generated word index.
    :rtype: LayerOutput
3913 3914
    """

Z
zhangjinchao01 已提交
3915 3916 3917 3918 3919
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3920
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3921 3922 3923 3924 3925 3926
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3927 3928
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
Z
zhangjinchao01 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3944 3945 3946 3947 3948 3949
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)
        return predict

Q
qijun 已提交
3959
    tmp = recurrent_group(
L
Luo Tao 已提交
3960 3961 3962 3963
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
L
Luo Tao 已提交
3964
        is_generating=True)
3965

Z
zhangjinchao01 已提交
3966 3967
    return tmp

Q
qijun 已提交
3968

3969 3970
def __cost_input__(input, label, weight=None):
    """
3971
    inputs and parents for cost layers.
3972 3973 3974 3975
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3976
        assert weight.size == 1
3977 3978 3979
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3980

Z
zhangjinchao01 已提交
3981 3982

@wrap_name_default()
L
luotao1 已提交
3983
@layer_support()
3984
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
3985
    """
L
Luo Tao 已提交
3986 3987 3988 3989
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
3990
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
3991 3992

    :param name: layer name.
3993
    :type name: basestring
Z
zhangjinchao01 已提交
3994
    :param input: Network prediction.
3995
    :type input: LayerOutput
Z
zhangjinchao01 已提交
3996
    :param label: Data label.
3997 3998 3999 4000
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4001 4002
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4003 4004
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4005
    :return: LayerOutput object.
4006
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4007
    """
4008 4009
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4010 4011 4012 4013
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4014
        coeff=coeff,
Q
qijun 已提交
4015
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4016
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4017 4018


L
Luo Tao 已提交
4019 4020 4021
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4022
@wrap_name_default("cost")
4023
@layer_support()
Q
qijun 已提交
4024 4025 4026 4027
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4028 4029
                        evaluator=classification_error_evaluator,
                        layer_attr=None):
Z
zhangjinchao01 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4039 4040 4041
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4042
    :param evaluator: Evaluator method.
4043 4044
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4045
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4046 4047 4048 4049 4050
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4051 4052 4053

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4054 4055 4056 4057 4058
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4069
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4070

4071
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4072 4073 4074 4075 4076
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4077
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4078

4079

Q
qijun 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4089 4090
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4101 4102
       op = conv_operator(img=input1,
                          filter=input2,
4103
                          filter_size=3,
Z
zhangjinchao01 已提交
4104 4105 4106
                          num_filters=64,
                          num_channels=64)

4107 4108 4109 4110
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4111 4112
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4113 4114 4115
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4116
    :type filter_size_y: int
4117 4118
    :param num_filters: channel of output data.
    :type num_filters: int
4119 4120
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4121
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4122
    :type stride: int
Z
zhangjinchao01 已提交
4123
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4124
    :type stride_y: int
Z
zhangjinchao01 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4138

4139 4140
    if num_channels is None:
        num_channels = img.num_filters
4141 4142 4143

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4144
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4145

4146 4147 4148
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4160

4161
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4162 4163
    return op

Q
qijun 已提交
4164

4165
@wrap_param_attr_default()
Q
qijun 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4176 4177
                    param_attr=None,
                    trans=False):
4178 4179 4180 4181 4182 4183 4184 4185 4186
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4187
       proj = conv_projection(input=input1,
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4202 4203
    :param num_channels: channel of input data.
    :type num_channels: int
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4216 4217
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4248
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4249 4250 4251 4252 4253
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4254 4255 4256
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4269 4270 4271 4272

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4273

D
dangqingqing 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4291

D
dangqingqing 已提交
4292
    For example,
4293

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4315 4316

    The simply usage is:
D
dangqingqing 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4378
@wrap_name_default()
L
luotao1 已提交
4379 4380
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4392 4393 4394 4395
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4396 4397 4398 4399 4400

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4401
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4402 4403 4404

    :param name: layer name
    :type name: basestring
4405 4406
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4407
    :param b: input layer b.
4408
    :type b: LayerOutput
L
luotao1 已提交
4409 4410
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4411
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4412 4413
    :rtype: LayerOutput
    """
4414 4415
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4416 4417 4418
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4419
        inputs=[a.name, b.name],
Q
qijun 已提交
4420
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4421

Q
qijun 已提交
4422 4423
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4424 4425 4426 4427 4428


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4429
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4430
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4431 4432 4433 4434 4435 4436 4437 4438
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4439 4440 4441 4442 4443
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4444
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4445 4446

    In this formular:
4447 4448
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4449 4450
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4451
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4452 4453 4454 4455 4456

    The simple usage is:

    .. code-block:: python

4457
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4458 4459 4460

    :param name: layer name
    :type name: basestring
4461 4462 4463 4464
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4465
    :param size: the layer dimension.
L
luotao02 已提交
4466
    :type size: int.
Z
zhangjinchao01 已提交
4467 4468 4469
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4470
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4471 4472 4473 4474 4475 4476
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4477
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4478 4479
    :rtype: LayerOutput
    """
4480
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4481 4482 4483 4484 4485 4486
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4487 4488 4489 4490
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4491 4492 4493 4494 4495 4496


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
4497
@layer_support()
Q
qijun 已提交
4498 4499
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4500
                       select=None,
Q
qijun 已提交
4501 4502
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4503 4504 4505
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4506 4507 4508
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4519
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4520 4521 4522 4523 4524

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4525 4526
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4527
                   If is None, acts exactly like fc_layer.
4528
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4541
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4542 4543 4544 4545
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4546
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4547 4548
        param_attr = [param_attr]
    else:
4549
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4550 4551 4552 4553
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4554 4555 4556 4557
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4558
    Layer(
Q
qijun 已提交
4559 4560 4561
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4562 4563 4564
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4565
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4566 4567 4568 4569
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4570 4571 4572 4573 4574 4575 4576
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4577 4578 4579


@wrap_name_default()
L
luotao1 已提交
4580 4581
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4596 4597
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4598
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4599 4600
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4601
    l = Layer(
Z
zhangjinchao01 已提交
4602 4603 4604
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4605 4606 4607
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4608 4609 4610


@wrap_name_default()
L
luotao1 已提交
4611
@layer_support()
Q
qijun 已提交
4612 4613 4614 4615
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4616
                          layer_attr=None):
Z
zhangjinchao01 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4638 4639
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4640
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4641 4642 4643 4644 4645 4646 4647 4648
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4649 4650 4651
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4652 4653 4654


@wrap_name_default()
L
luotao1 已提交
4655
@layer_support()
Q
qijun 已提交
4656
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4657
    """
4658 4659 4660 4661
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4662 4663 4664

    .. math::

4665
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4666

4667 4668 4669 4670 4671
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4672

4673
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4674 4675

    In this formular:
4676 4677 4678 4679 4680 4681
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4682 4683 4684 4685 4686

    The simple usage is:

    .. code-block:: python

4687
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4688 4689
                                       size=elem_dim)

4690 4691 4692 4693
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4694 4695 4696 4697
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4698 4699
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4700
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4701 4702
    :rtype: LayerOutput
    """
4703 4704 4705 4706
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4707
            size = vectors.size / weights.size
4708 4709
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4710 4711
    Layer(
        name=name,
4712
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4713
        size=size,
4714
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4715 4716 4717
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4718

4719

4720
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4721

4722

Z
zhangjinchao01 已提交
4723
@wrap_name_default()
L
luotao1 已提交
4724
@layer_support()
Z
zhangjinchao01 已提交
4725 4726 4727 4728 4729 4730 4731
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4732
                       num_channels=None,
L
luotao1 已提交
4733 4734
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4735 4736
    """
    Expand feature map to minibatch matrix.
4737
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4738
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4749
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4750 4751
    convolution neural network, and before recurrent neural network.

4752 4753 4754 4755
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4756
       block_expand = block_expand_layer(input=layer,
4757
                                         num_channels=128,
4758 4759 4760 4761 4762
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4763 4764
    :param input: The input layer.
    :type input: LayerOutput
4765 4766
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4781 4782
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4783
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4784 4785
    :rtype: LayerOutput
    """
4786 4787 4788
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4806 4807


4808 4809
@wrap_name_default()
@layer_support()
4810
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4811 4812 4813 4814 4815
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4816
    So groups should be larger than 1, and the num of channels should be able
4817 4818
    to devided by groups.

4819
    Please refer to Paper:
4820 4821 4822 4823
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4824

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4863 4864


Z
zhangjinchao01 已提交
4865
@wrap_name_default()
L
luotao1 已提交
4866
@layer_support()
Q
qijun 已提交
4867 4868 4869 4870 4871
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4872
              layer_attr=None):
Z
zhangjinchao01 已提交
4873 4874 4875 4876 4877
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4878 4879
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4880 4881
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4882 4883 4884 4885 4886 4887 4888 4889

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4890
    The example usage is:
Z
zhangjinchao01 已提交
4891 4892 4893 4894 4895 4896 4897 4898

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4899
    :param input: The input layer.
Z
zhangjinchao01 已提交
4900 4901 4902
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4903
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4904
    :type size: int
4905 4906
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4907 4908
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4909 4910
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4911
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4912 4913 4914 4915
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4916 4917 4918 4919 4920
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4921
    Layer(
4922 4923 4924 4925
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4926
        inputs=[input.name, label.name],
Q
qijun 已提交
4927
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4928 4929
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4930

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
4942
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
4943
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
4961 4962 4963 4964

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
4965
    icml2006_GravesFGS06.pdf>`_.
4966 4967 4968

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
4969 4970 4971
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
4972 4973
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4974
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4975
          'linear' activation is expected instead in the 'input' layer.
4976

C
caoying03 已提交
4977
    The example usage is:
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5023
@wrap_name_default()
5024
@wrap_param_attr_default()
L
luotao1 已提交
5025
@layer_support()
Q
qijun 已提交
5026 5027 5028 5029 5030 5031
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5032
              coeff=1.0,
L
luotao1 已提交
5033
              layer_attr=None):
Z
zhangjinchao01 已提交
5034 5035 5036 5037
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5038
    The example usage is:
Z
zhangjinchao01 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5049
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5059 5060
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5061 5062
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5063
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5064 5065 5066 5067 5068
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5069 5070 5071 5072 5073 5074
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5075

Q
qijun 已提交
5076
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5077 5078 5079 5080
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5081 5082 5083 5084
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5085
        coeff=coeff,
Q
qijun 已提交
5086
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5087 5088 5089
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5090 5091 5092 5093
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5094

5095

Z
zhangjinchao01 已提交
5096
@wrap_name_default()
5097
@wrap_param_attr_default()
L
luotao1 已提交
5098
@layer_support()
Q
qijun 已提交
5099 5100 5101 5102 5103
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5104
                       layer_attr=None):
Z
zhangjinchao01 已提交
5105 5106 5107 5108 5109 5110 5111
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5112
    The example usage is:
L
Luo Tao 已提交
5113 5114 5115 5116 5117 5118

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5129 5130
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5132 5133 5134 5135 5136 5137
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5138
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5139 5140 5141 5142
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5143 5144 5145 5146
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5147
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5148 5149 5150
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5151 5152 5153 5154
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5155

Q
qijun 已提交
5156

Y
Yu Yang 已提交
5157
@wrap_act_default(act=SigmoidActivation())
5158
@wrap_bias_attr_default(has_bias=True)
5159
@wrap_param_attr_default()
5160 5161
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5162 5163
def nce_layer(input,
              label,
C
caoying03 已提交
5164
              num_classes=None,
Y
Yu Yang 已提交
5165
              act=None,
5166
              param_attr=None,
Q
qijun 已提交
5167 5168 5169 5170 5171 5172
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5173 5174 5175 5176 5177 5178 5179 5180 5181
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5182 5183
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5195
    :type num_classes: int
Y
Yu Yang 已提交
5196 5197
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5198 5199
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5200
    :param num_neg_samples: number of negative samples. Default is 10.
5201
    :type num_neg_samples: int
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5215 5216 5217 5218 5219 5220 5221 5222
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5223
    assert isinstance(input, collections.Sequence)
5224

5225 5226
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5227 5228
    if num_classes is None:
        num_classes = label.size
5229 5230 5231
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5232
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5233 5234
    if not isinstance(act, BaseActivation):
        raise TypeError()
5235

5236 5237
    ipts_for_layer = []
    parents = []
5238
    for each_input, attr in zip(input, param_attr):
5239
        assert isinstance(each_input, LayerOutput)
5240
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5251
    l = Layer(
5252 5253 5254 5255
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5256
        active_type=act.name,
5257 5258 5259
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5260 5261
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5262 5263 5264 5265 5266
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5267

5268

Z
zhangjinchao01 已提交
5269 5270 5271
"""
following are cost Layers.
"""
5272 5273


Z
zhangjinchao01 已提交
5274
@wrap_name_default()
L
luotao1 已提交
5275
@layer_support()
Q
qijun 已提交
5276 5277 5278 5279 5280 5281 5282
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5283
    """
5284
    A cost Layer for learning to rank using gradient descent. Details can refer
5285 5286
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5287 5288 5289 5290 5291
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5292
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5293

L
luotao02 已提交
5294
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5295

L
luotao02 已提交
5296
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5297 5298 5299 5300 5301 5302 5303 5304

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5305
    The example usage is:
Z
zhangjinchao01 已提交
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5326 5327
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5328
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5341 5342 5343 5344 5345 5346
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5347

X
xuwei06 已提交
5348
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5349

5350

Z
zhangjinchao01 已提交
5351
@wrap_name_default()
L
luotao1 已提交
5352
@layer_support()
Q
qijun 已提交
5353 5354 5355 5356 5357 5358
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5359 5360 5361
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5362
    The example usage is:
Z
zhangjinchao01 已提交
5363 5364 5365 5366 5367 5368 5369 5370

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5371
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5383 5384 5385
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5386 5387 5388
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5389 5390
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5391
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5392 5393
    :rtype: LayerOutput
    """
5394 5395 5396
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5397 5398 5399 5400 5401 5402 5403
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5404

Q
qijun 已提交
5405 5406
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5407

5408

Z
zhangjinchao01 已提交
5409
@wrap_name_default()
L
luotao1 已提交
5410
@layer_support()
5411 5412 5413 5414 5415 5416
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5417 5418 5419
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5420 5421
    The example usage is:

Z
zhangjinchao01 已提交
5422 5423
    .. code-block:: python

X
xuwei06 已提交
5424
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5425
                            label=label_layer)
Z
zhangjinchao01 已提交
5426 5427 5428 5429 5430 5431 5432

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5433 5434
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5435
    :type coeff: float.
5436 5437 5438 5439
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5440 5441
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5442
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5443 5444 5445
    :rtype: LayerOutput.
    """

5446
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5447 5448 5449
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5450
        inputs=ipts,
Q
qijun 已提交
5451 5452
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5453
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5454

5455

Z
zhangjinchao01 已提交
5456
@wrap_name_default()
L
luotao1 已提交
5457
@layer_support()
Q
qijun 已提交
5458 5459 5460 5461
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5462 5463
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5464 5465
    """
    A loss layer for multi class entropy with selfnorm.
5466
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5467

C
caoying03 已提交
5468 5469
    The example usage is:

Z
zhangjinchao01 已提交
5470 5471
    .. code-block:: python

X
xuwei06 已提交
5472
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5473
                                          label=label_layer)
Z
zhangjinchao01 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5485 5486
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5487
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5488 5489
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5490 5491 5492 5493 5494 5495 5496
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5497

Q
qijun 已提交
5498 5499 5500 5501 5502
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5503

5504

X
xuwei06 已提交
5505 5506 5507 5508 5509 5510
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5511 5512
    The example usage is:

X
xuwei06 已提交
5513 5514
    .. code-block:: python

L
Luo Tao 已提交
5515
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5526
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5527 5528 5529 5530 5531
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5532

Q
qijun 已提交
5533
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5534 5535


Z
zhangjinchao01 已提交
5536
@wrap_name_default()
L
luotao1 已提交
5537 5538
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5539 5540 5541
    """
    A loss layer for huber loss.

C
caoying03 已提交
5542 5543
    The example usage is:

Z
zhangjinchao01 已提交
5544 5545
    .. code-block:: python

X
xuwei06 已提交
5546
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5547
                         label=label_layer)
Z
zhangjinchao01 已提交
5548 5549 5550 5551 5552 5553 5554 5555 5556

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5557 5558
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5559
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5560 5561
    :rtype: LayerOutput.
    """
5562 5563 5564
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5565 5566 5567 5568 5569 5570
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5571
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5572

5573

Z
zhangjinchao01 已提交
5574
@wrap_name_default()
L
luotao1 已提交
5575
@layer_support()
Q
qijun 已提交
5576 5577 5578 5579
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5580
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5581 5582 5583
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5584 5585
    The example usage is:

Z
zhangjinchao01 已提交
5586 5587
    .. code-block:: python

X
xuwei06 已提交
5588
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5589
                                               label=label_layer)
Z
zhangjinchao01 已提交
5590 5591 5592 5593 5594 5595 5596 5597 5598

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5599 5600
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5601
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5602 5603 5604
    :rtype: LayerOutput
    """

5605 5606
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5623 5624 5625 5626


@wrap_name_default()
@layer_support()
5627
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5628 5629
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5630
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5631 5632 5633 5634 5635 5636 5637 5638 5639

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5640
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5641

D
dangqingqing 已提交
5642 5643 5644
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5645 5646
    The example usage is:

D
dangqingqing 已提交
5647 5648
    .. code-block:: python

5649 5650
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5651 5652 5653 5654 5655 5656 5657

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5658 5659
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5673
        coeff=coeff,
D
dangqingqing 已提交
5674 5675 5676
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5696 5697
    The example usage is:

W
wwhu 已提交
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5730 5731


5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5748 5749


D
dangqingqing 已提交
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
 
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
 
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5822 5823


5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5843 5844 5845 5846 5847 5848
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5849 5850 5851 5852 5853
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5854 5855 5856 5857 5858 5859

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5860 5861 5862 5863 5864 5865 5866 5867
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
5868 5869
    assert isinstance(input, LayerOutput), 'prelu_layer only accepts one input'
    assert isinstance(param_attr, ParameterAttribute)
5870 5871 5872

    l = Layer(
        name=name,
C
caoying03 已提交
5873
        type=LayerType.PRELU,
C
caoying03 已提交
5874
        inputs=Input(input.name, **param_attr.attr),
5875 5876 5877 5878 5879 5880 5881
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)