pipeline_optimizer.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from __future__ import print_function
15
from __future__ import division
16
import os
17 18 19 20

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
21 22
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
23
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_loss_grad_op, is_backward_op, is_optimizer_op
24

25 26
__all__ = []

27

28 29 30 31
class PipelineOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
32 33 34 35
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
        ]
36
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
37 38 39
        self.global_ring_id = 1
        self.dp_ring_id = 2
        self.start_pipeline_ring_id = 20  # Just a magic number
40 41 42 43 44

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(PipelineOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
45 46
        self.micro_batch_size = user_defined_strategy.pipeline_configs[
            'micro_batch_size']
47
        self.num_microbatches = user_defined_strategy.pipeline_configs[
48
            'accumulate_steps']
49 50
        self.schedule_mode = user_defined_strategy.pipeline_configs[
            'schedule_mode']
51
        self.use_sharding = user_defined_strategy.sharding
52 53

    def _can_apply(self):
54 55 56
        if not self.role_maker._is_collective:
            return False

57 58 59 60
        # FIXME revise for hybrid parallelism
        if self.use_sharding:
            return False

61 62 63 64 65 66
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
67 68 69 70 71
        dist_strategy.pipeline_configs = {
            "micro_batch_size": 1,
            "accumulate_steps": 1,
            "schedule_mode": "1F1B",
        }
72

73
    def _enable_strategy(self, dist_strategy, context):
74
        dist_strategy.pipeline = True
75 76 77
        dist_strategy.pipeline_configs = {
            "micro_batch_size": 1,
            "accumulate_steps": 1,
78
            "schedule_mode": "1F1B",
79
        }
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def _broadcast_params(self, ring_id):
        block = self.startup_program.global_block()
        param = None
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        if not param: return  # no parameter on this device
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

    def _get_process_group_info(self):
        # global ring info
        self.global_endpoints = self.endpoints
        self.global_rank = self.rank
        self.global_nranks = self.nranks

        # data parallel ring info
        if self.pipeline_num > 1:
            self.dp_rank = self.rank // self.inner_parallelism
            self.dp_nranks = self.nranks // self.inner_parallelism
            start_index = self.rank % self.inner_parallelism
            self.dp_endpoints = [
                self.endpoints[start_index + i * self.inner_parallelism]
                for i in range(self.pipeline_num)
            ]

    def _init_process_group(self, pipeline_pair, pipeline_ring_map):
        self._get_process_group_info()
        collective_helper = CollectiveHelper(self.role_maker, wait_port=False)
        # Create global ring for all gpus (ring_id = 0)
        collective_helper._init_communicator(
            self.startup_program, self.current_endpoint, self.global_endpoints,
            self.global_rank, self.global_ring_id, True, self.global_ring_id,
            True)
        # Create pipeline rings
        if self.inner_parallelism > 1:
            pipeline_id = self.rank // self.inner_parallelism
            start_index = pipeline_id * self.inner_parallelism
            for pair in pipeline_pair:
                pair_key = pair[0] * 1000 + pair[1]
                ring_id = pipeline_ring_map[pair_key]
                assert ring_id >= self.start_pipeline_ring_id
                first_node = pair[0] + start_index
                second_node = pair[1] + start_index
                if self.rank != first_node and self.rank != second_node:
141 142 143
                    collective_helper._init_communicator(
                        self.startup_program, None, None, None, None, False,
                        self.global_ring_id, True)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                    continue
                pipeline_endpoints = [
                    self.endpoints[first_node], self.endpoints[second_node]
                ]
                pipeline_rank = 0 if self.rank == first_node else 1
                pipeline_nranks = 2
                collective_helper._init_communicator(
                    self.startup_program, self.current_endpoint,
                    pipeline_endpoints, pipeline_rank, ring_id, False,
                    self.global_ring_id, True)

        # Create dp rings
        if self.pipeline_num > 1:
            collective_helper._init_communicator(
                self.startup_program, self.current_endpoint, self.dp_endpoints,
                self.dp_rank, self.dp_ring_id, True, self.global_ring_id, True)
            self._broadcast_params(self.dp_ring_id)

162 163 164 165 166
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
167 168
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
169 170
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
171

172 173 174 175 176 177 178 179 180 181 182 183 184
        self.wrapped_opt = PO(self.inner_opt,
                              num_microbatches=self.num_microbatches)
        orig_startup_program = startup_program if startup_program else fluid.default_startup_program(
        )
        block = loss.block
        program = block.program

        program._pipeline_opt = dict()
        program._pipeline_opt['local_rank'] = self.rank
        program._pipeline_opt['global_ring_id'] = self.global_ring_id
        program._pipeline_opt['ring_id'] = self.start_pipeline_ring_id
        program._pipeline_opt['micro_batch_size'] = self.micro_batch_size
        program._pipeline_opt['schedule_mode'] = self.schedule_mode
185
        program._pipeline_opt['use_sharding'] = False
186
        optimize_ops, params_grads, prog_list, pp_pair, ring_map = self.wrapped_opt.minimize(
187
            loss, startup_program, parameter_list, no_grad_set)
188 189 190
        self.startup_program = orig_startup_program._pipeline_opt[
            'startup_program']
        self.inner_parallelism = program._pipeline_opt['inner_parallelism']
191
        assert self.nranks % self.inner_parallelism == 0
192 193
        assert prog_list
        self.pipeline_num = len(self.endpoints) // self.inner_parallelism
194

195
        self._init_process_group(pp_pair, ring_map)
196

197 198 199 200
        self.main_program_list = prog_list
        self.main_program = program
        if self.pipeline_num > 1:
            self._transpile_main_program(loss)
201
        return optimize_ops, params_grads
202

203 204 205
    def _transpile_main_program(self, loss):
        self._insert_loss_grad_ops(loss, self.pipeline_num)
        self._insert_allreduce_ops(self.dp_ring_id)
206

207
    def _insert_loss_grad_ops(self, loss, pipeline_num):
208 209 210 211
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
212
        block = self.main_program_list[-1].global_block()
213 214 215 216 217 218 219 220 221
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
222
                        'scale': 1.0 / pipeline_num,
223 224 225 226
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, ring_id):
227 228
        block = self.main_program._pipeline_opt['section_program'].global_block(
        )
229 230
        origin_block = self.main_program.global_block()
        grad = None
231
        processed_param_name = set()
232
        first_optimize_op_idx = None
233
        for idx, op in reversed(list(enumerate(block.ops))):
234 235 236 237
            if is_backward_op(op) and not first_optimize_op_idx:
                first_optimize_op_idx = idx + 1
                # no optimize phase
                if first_optimize_op_idx == len(block.ops): return
238
            if is_backward_op(op) and \
239
                    OP_ROLE_VAR_KEY in op.attr_names:
240 241 242 243
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
244
                offset = 0
245
                for i in range(0, len(op_role_var), 2):
246
                    param_name = op_role_var[i]
247
                    param = block.vars[op_role_var[i]]
248 249
                    if param_name in processed_param_name: continue
                    processed_param_name.add(param_name)
250 251 252
                    grad_name = op_role_var[i + 1]
                    if not 'MERGED' in grad_name: grad_name += '@MERGED'
                    grad = block.vars[grad_name]
253 254 255 256 257
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue

                    block._insert_op(
258
                        first_optimize_op_idx + offset,
259
                        type='c_allreduce_sum',
260 261 262 263
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
264 265
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Optimize
266
                        })