pipeline_optimizer.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from __future__ import print_function
15
from __future__ import division
16 17 18 19

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
20 21
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
22
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_loss_grad_op, is_backward_op, is_optimizer_op
23 24


25 26 27 28
class PipelineOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
29 30 31 32
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
        ]
33
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
34 35 36
        self.global_ring_id = 1
        self.dp_ring_id = 2
        self.start_pipeline_ring_id = 20  # Just a magic number
37 38 39 40 41

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(PipelineOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
42 43
        self.micro_batch_size = user_defined_strategy.pipeline_configs[
            'micro_batch_size']
44
        self.num_microbatches = user_defined_strategy.pipeline_configs[
45
            'accumulate_steps']
46 47
        self.schedule_mode = user_defined_strategy.pipeline_configs[
            'schedule_mode']
48
        self.use_sharding = user_defined_strategy.sharding
49 50

    def _can_apply(self):
51 52 53
        if not self.role_maker._is_collective:
            return False

54 55 56 57
        # FIXME revise for hybrid parallelism
        if self.use_sharding:
            return False

58 59 60 61 62 63
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
64 65 66 67 68
        dist_strategy.pipeline_configs = {
            "micro_batch_size": 1,
            "accumulate_steps": 1,
            "schedule_mode": "1F1B",
        }
69

70
    def _enable_strategy(self, dist_strategy, context):
71
        dist_strategy.pipeline = True
72 73 74
        dist_strategy.pipeline_configs = {
            "micro_batch_size": 1,
            "accumulate_steps": 1,
75
            "schedule_mode": "1F1B",
76
        }
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    def _broadcast_params(self, ring_id):
        block = self.startup_program.global_block()
        param = None
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        if not param: return  # no parameter on this device
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

    def _get_process_group_info(self):
        # global ring info
        self.global_endpoints = self.endpoints
        self.global_rank = self.rank
        self.global_nranks = self.nranks

        # data parallel ring info
        if self.pipeline_num > 1:
            self.dp_rank = self.rank // self.inner_parallelism
            self.dp_nranks = self.nranks // self.inner_parallelism
            start_index = self.rank % self.inner_parallelism
            self.dp_endpoints = [
                self.endpoints[start_index + i * self.inner_parallelism]
                for i in range(self.pipeline_num)
            ]

    def _init_process_group(self, pipeline_pair, pipeline_ring_map):
        self._get_process_group_info()
        collective_helper = CollectiveHelper(self.role_maker, wait_port=False)
        # Create global ring for all gpus (ring_id = 0)
        collective_helper._init_communicator(
            self.startup_program, self.current_endpoint, self.global_endpoints,
            self.global_rank, self.global_ring_id, True, self.global_ring_id,
            True)
        # Create pipeline rings
        if self.inner_parallelism > 1:
            pipeline_id = self.rank // self.inner_parallelism
            start_index = pipeline_id * self.inner_parallelism
            for pair in pipeline_pair:
                pair_key = pair[0] * 1000 + pair[1]
                ring_id = pipeline_ring_map[pair_key]
                assert ring_id >= self.start_pipeline_ring_id
                first_node = pair[0] + start_index
                second_node = pair[1] + start_index
                if self.rank != first_node and self.rank != second_node:
                    continue
                pipeline_endpoints = [
                    self.endpoints[first_node], self.endpoints[second_node]
                ]
                pipeline_rank = 0 if self.rank == first_node else 1
                pipeline_nranks = 2
                collective_helper._init_communicator(
                    self.startup_program, self.current_endpoint,
                    pipeline_endpoints, pipeline_rank, ring_id, False,
                    self.global_ring_id, True)

        # Create dp rings
        if self.pipeline_num > 1:
            collective_helper._init_communicator(
                self.startup_program, self.current_endpoint, self.dp_endpoints,
                self.dp_rank, self.dp_ring_id, True, self.global_ring_id, True)
            self._broadcast_params(self.dp_ring_id)

156 157 158 159 160
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
161 162
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
163 164
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
165

166 167 168 169 170 171 172 173 174 175 176 177 178
        self.wrapped_opt = PO(self.inner_opt,
                              num_microbatches=self.num_microbatches)
        orig_startup_program = startup_program if startup_program else fluid.default_startup_program(
        )
        block = loss.block
        program = block.program

        program._pipeline_opt = dict()
        program._pipeline_opt['local_rank'] = self.rank
        program._pipeline_opt['global_ring_id'] = self.global_ring_id
        program._pipeline_opt['ring_id'] = self.start_pipeline_ring_id
        program._pipeline_opt['micro_batch_size'] = self.micro_batch_size
        program._pipeline_opt['schedule_mode'] = self.schedule_mode
179
        program._pipeline_opt['use_sharding'] = False
180
        optimize_ops, params_grads, prog_list, pp_pair, ring_map = self.wrapped_opt.minimize(
181
            loss, startup_program, parameter_list, no_grad_set)
182 183 184
        self.startup_program = orig_startup_program._pipeline_opt[
            'startup_program']
        self.inner_parallelism = program._pipeline_opt['inner_parallelism']
185
        assert self.nranks % self.inner_parallelism == 0
186 187
        assert prog_list
        self.pipeline_num = len(self.endpoints) // self.inner_parallelism
188

189
        self._init_process_group(pp_pair, ring_map)
190

191 192 193 194
        self.main_program_list = prog_list
        self.main_program = program
        if self.pipeline_num > 1:
            self._transpile_main_program(loss)
195
        return optimize_ops, params_grads
196

197 198 199
    def _transpile_main_program(self, loss):
        self._insert_loss_grad_ops(loss, self.pipeline_num)
        self._insert_allreduce_ops(self.dp_ring_id)
200

201
    def _insert_loss_grad_ops(self, loss, pipeline_num):
202 203 204 205
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
206
        block = self.main_program_list[-1].global_block()
207 208 209 210 211 212 213 214 215
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
216
                        'scale': 1.0 / pipeline_num,
217 218 219 220
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, ring_id):
221 222
        block = self.main_program._pipeline_opt['section_program'].global_block(
        )
223 224
        origin_block = self.main_program.global_block()
        grad = None
225
        processed_param_name = set()
226
        first_optimize_op_idx = None
227
        for idx, op in reversed(list(enumerate(block.ops))):
228 229 230 231
            if is_backward_op(op) and not first_optimize_op_idx:
                first_optimize_op_idx = idx + 1
                # no optimize phase
                if first_optimize_op_idx == len(block.ops): return
232
            if is_backward_op(op) and \
233
                    OP_ROLE_VAR_KEY in op.attr_names:
234 235 236 237
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
238
                offset = 0
239
                for i in range(0, len(op_role_var), 2):
240
                    param_name = op_role_var[i]
241
                    param = block.vars[op_role_var[i]]
242 243
                    if param_name in processed_param_name: continue
                    processed_param_name.add(param_name)
244 245 246
                    grad_name = op_role_var[i + 1]
                    if not 'MERGED' in grad_name: grad_name += '@MERGED'
                    grad = block.vars[grad_name]
247 248 249 250 251
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue

                    block._insert_op(
252
                        first_optimize_op_idx + offset,
253
                        type='c_allreduce_sum',
254 255 256 257
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
258 259
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Optimize
260
                        })