elementwise_op.h 5.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
16
#include <string>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
G
gongweibao 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
28
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
29
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
30
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
32
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
33 34 35 36 37
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
38
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
39
                      "Rank of first input must >= rank of second input.");
Q
Qiao Longfei 已提交
40 41
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
42 43 44
  }
};

C
chengduoZH 已提交
45 46 47 48 49 50 51 52 53 54
class ElementwiseOpInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
    auto x_var = op_desc.Input("X")[0];
    auto out_var = op_desc.Output("Out")[0];
    block->Var(out_var)->SetType(block->Var(x_var)->GetType());
  }
};

G
gongweibao 已提交
55 56
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
57
  void Make() final {
C
caoying03 已提交
58 59 60
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
    AddOutput("Out", "The output of elementwise op.");
G
gongweibao 已提交
61
    AddAttr<int>("axis",
C
caoying03 已提交
62 63
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
64 65
        .SetDefault(-1)
        .EqualGreaterThan(-1);
Y
Yu Yang 已提交
66 67
    AddComment(string::Sprintf(R"DOC(
Limited Elementwise %s Operator.
K
kexinzhao 已提交
68 69 70

The equation is:

Y
Yu Yang 已提交
71
$$%s$$
K
kexinzhao 已提交
72

C
caoying03 已提交
73 74
$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.
K
kexinzhao 已提交
75 76

There are two cases for this operator:
C
caoying03 已提交
77
1. The shape of $Y$ is same with $X$;
78 79 80
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions
   of size 1 for $Y$ will be ignored for the consideration of subsequence.

K
kexinzhao 已提交
81 82

For case 2:
83

C
caoying03 已提交
84 85
$Y$ will be broadcasted to match the shape of $X$ and axis should be
set to index of the start dimension to broadcast $Y$ onto $X$.
K
kexinzhao 已提交
86

87 88
If axis is -1, it is treated as axis=rank(X)-rank(Y).

89 90
For example
  .. code-block:: python
G
gongweibao 已提交
91

92 93 94 95 96
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
97
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
98

C
caoying03 已提交
99 100
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
101

Y
Yu Yang 已提交
102 103
)DOC",
                               GetName(), GetEquation()));
G
gongweibao 已提交
104 105 106
  }

 protected:
Y
Yu Yang 已提交
107 108
  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;
G
gongweibao 已提交
109 110 111 112 113 114 115
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

116
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
117 118 119 120 121 122 123 124
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
125 126

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
127
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
128

Q
Qiao Longfei 已提交
129 130 131 132
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
G
gongweibao 已提交
133
    }
Q
Qiao Longfei 已提交
134 135
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
G
gongweibao 已提交
136 137 138 139 140
    }
  }
};
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153

#define REGISTER_ELEMWISE_OP(op_type, op_name, equation)                \
  class __ElemwiseOp##op_type##Maker__                                  \
      : public ::paddle::operators::ElementwiseOpMaker {                \
   protected:                                                           \
    virtual std::string GetName() const { return op_name; }             \
    virtual std::string GetEquation() const { return equation; }        \
  };                                                                    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    __ElemwiseOp##op_type##Maker__,                     \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)